您好,欢迎来到抵帆知识网。
搜索
您的当前位置:首页第二章课后习题与答案

第二章课后习题与答案

来源:抵帆知识网
……………………………………………………………最新资料推荐…………………………………………………

第2章 人工智能与知识工程初步

1. 设有如下语句,请用相应的谓词公式分别把他们表示出来:s

(1) 有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花 。 解:定义谓词d P(x):x是人 L(x,y):x喜欢y

其中,y的个体域是{梅花,菊花}。

将知识用谓词表示为:

(x )(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花)) (2)有人每天下午都去打篮球。 解:定义谓词 P(x):x是人 B(x):x打篮球 A(y):y是下午

将知识用谓词表示为:a

(x )(y) (A(y)→B(x)∧P(x))

(3) 新型计算机速度又快,存储容量又大。 解:定义谓词

NC(x):x是新型计算机 F(x):x速度快 B(x):x容量大

将知识用谓词表示为: (x) (NC(x)→F(x)∧B(x))

(4)不是每个计算机系的学生都喜欢在计算机上编程序。 解:定义谓词

S(x):x是计算机系学生

L(x, pragramming):x喜欢编程序 U(x,computer):x使用计算机 将知识用谓词表示为:

¬(x) (S(x)→L(x, pragramming)∧U(x,computer)) (5)凡是喜欢编程序的人都喜欢计算机。 解:定义谓词 P(x):x是人 L(x, y):x喜欢y

将知识用谓词表示为:

(x) (P(x)∧L(x,pragramming)→L(x, computer))

1

……………………………………………………………最新资料推荐…………………………………………………

2请对下列命题分别写出它们的语义网络: (1) 每个学生都有一台计算机。 解:

GS

学生 占有权 计算机

AKO ISA ISA g F Owner Owns c g s o 

(2) 高老师从3月到7月给计算机系学生讲《计算机网络》课。 解: 7月 8月

End Start

ISA 老师 高老师 Subject Action 讲课 讲课事件 Object Caurse 计算机网络 计算机系学生 (3) 的学员有男、有女、有研究生、有本科生。 解:参例2.14

(4) 创新公司在科海大街56号,刘洋是该公司的经理,他32岁、硕士学位。 解:参例2.10

(5) 红队与蓝队进行足球比赛,最后以3:2的比分结束。 解: 比赛

AKO Participants1 Outcome 足球赛 3:2 红队 Participants 2

蓝队

2

……………………………………………………………最新资料推荐…………………………………………………

2.19 请把下列命题用一个语义网络表示出来: (1) 树和草都是植物; 解:

植物

AKO AKO

树 草

(2) 树和草都有叶和根; 解:

叶 根

Have Have

植物 是一种 是一种

树 草

(3) 水草是草,且生长在水中; 解: AKO AKO 水草 草 植物

(4) 果树是树,且会结果; 解:

AKO AKO 果树 树 植物

(5) 梨树是果树中的一种,它会结梨。 解: AKO AKO 梨树 果树 树

Live 水中 Can 结果 Can 结梨 3

……………………………………………………………最新资料推荐…………………………………………………

第5章 计算智能部分参

5.15 对遗传法的选择操作:设种群规模为4,个体采用二进制编码,适应度函数为f(x)=x2,初始种群情况如下表所示: 编号 S01 S02 S03 S04 个体串 1010 0100 1100 0111 x 10 4 12 7 适应值 百分比 累计百分比 选中次数 若规定选择概率为100%,选择算法为轮盘赌算法,且依次生成的4个随机数为0.42, 0.16, 0., 0.71,请填写上表中的全部内容,并求出经本次选择操作后所得到的新的种群。

解:表格的完整内容为: 编号 S01 S02 S03 S04 S01=1100 S02=1010 S03=0111 S04=1100

个体串 1010 0100 1100 0111 x 10 4 12 7 适应值 百分比 累计百分比 选中次数 100 16 144 49 32.36 5.18 44.60 15.86 32.36 37. 84.14 100 1 0 2 1 本次选择后所得到的新的种群为: 5.18 设某小组有5个同学,分别为S1,S2,S3,S4,S5。若对每个同学的“学习好”程度打分: S1:95 S2:85 S3:80 S4:70 S5:90

这样就确定了一个模糊集F,它表示该小组同学对“学习好”这一模糊概念的隶属程度,请写出该模糊集。

解:对模糊集为F,可表示为:

F=95/ S1+85/S2+80/ S3+70/S4+90/S5 或

F={95/ S1, 85/S2, 80/ S3, 70/S4, 90/S5}

5.19 设有论域 U={u1, u2, u3, u4, u5}

并设F、G是U上的两个模糊集,且有 F=0.9/u1+0.7/u2+0.5/u3+0.3/u4 G=0.6/u3+0.8/u4+1/u5 请分别计算 F∩G,F∪G,﹁F。

4

……………………………………………………………最新资料推荐…………………………………………………

解:F∩G=(0.9∧0)/ u1+(0.7∧0)/ u2+(0.5∧0.6)/u3+(0.3∧0.8)/u4+(0∧1)/u5 =0/ u1+0/ u2+0.5/u3+0.3/u4+0/u5 =0.5/u3+0.3/u4

F∪G=(0.9∨0)/ u1+(0.7∨0)/ u2+(0.5∨0.6)/u3+(0.3∨0.8)/u4+(0∨1)/u5

=0.9/ u1+0.7/ u2+0.6/u3+0.8/u4+1/u5

﹁F=(1-0.9)/ u1+(1-0.7)/ u2+(1-0.5)/u3+(1-0.3)/u4+(1-0)/u5

=0.1/ u1+0.3/ u2+0.5/u3+0.7/u4+1/u5

5.21设有如下两个模糊关系:

0.30.70.2R1100.400.510.20.8R20.60.40.90.1请写出R1与R2的合成R1οR2。

解:R(1,1)=(0.3∧0.2)∨(0.7∧0.6)∨(0.2∧0.9)= 0.2∨0.6∨0.2=0.6

R(1,2)=(0.3∧0.8)∨(0.7∧0.4)∨(0.2∧0.1)= 0.3∨0.4∨0.1=0.4 R(2,1)=(1∧0.2)∨(0∧0.6)∨(0.4∧0.9)= 0.2∨0∨0.4=0.4 R(2,2)=(1∧0.8)∨(0∧0.4)∨(0.4∧0.1)= 0.8∨0∨0.1=0.8 R(3,1)=(0∧0.2)∨(0.5∧0.6)∨(1∧0.9)= 0.2∨0.6∨0.9=0.9 R(3,2)=(0∧0.8)∨(0.5∧0.4)∨(1∧0.1)= 0∨0.4∨0.1=0.4

因此有

0.60.4

R1R20.40.80.90.4

5.22 设F是论域U上的模糊集,R是U×V上的模糊关系,F和R分别为:

F{0.4,0.6,0.8}0.10.30.5R0.40.60.80.60.30求模糊变换FοR。

解:

FR{0.40.10.60.40.80.6,0.40.30.60.60.80.3 0.40.50.60.80.80} ={0.1∨0.4∨0.6, 0.3∨0.6∨0.3,0.4∨0.6∨0 } ={0.6, 0.6, 0.6}

5

……………………………………………………………最新资料推荐…………………………………………………

第6章 不确定性推理部分参

6.8 设有如下一组推理规则: r1: IF E1 THEN E2 (0.6)

r2: IF E2 AND E3 THEN E4 (0.7) r3: IF E4 THEN H (0.8) r4: IF E5 THEN H (0.9)

且已知CF(E1)=0.5, CF(E3)=0.6, CF(E5)=0.7。求CF(H)=? 解:(1) 先由r1求CF(E2)

CF(E2)=0.6 × max{0,CF(E1)} =0.6 × max{0,0.5}=0.3

(2) 再由r2求CF(E4)

CF(E4)=0.7 × max{0, min{CF(E2 ), CF(E3 )}} =0.7 × max{0, min{0.3, 0.6}}=0.21

(3) 再由r3求CF1(H)

CF1(H)= 0.8× max{0,CF(E4)}

=0.8× max{0, 0.21)}=0.168 (4) 再由r4求CF2(H)

CF2(H)= 0.9×max{0,CF(E5)} =0.9×max{0, 0.7)}=0.63

(5) 最后对CF1(H)和CF2(H)进行合成,求出CF(H) CF(H)= CF1(H)+CF2(H)+ CF1(H)×CF2(H) =0.692

6.10 设有如下推理规则

r1: IF E1 THEN (2, 0.00001) H1

r2: IF E2 THEN (100, 0.0001) H1 r3: IF E3 THEN (200, 0.001) H2 r4: IF H1 THEN (50, 0.1) H2

且已知P(E1)= P(E2)= P(H3)=0.6, P(H1)=0.091, P(H2)=0.01, 又由用户告知: P(E1| S1)=0.84, P(E2|S2)=0.68, P(E3|S3)=0.36 请用主观Bayes方法求P(H2|S1, S2, S3)=? 解:(1) 由r1计算O(H1| S1)

先把H1的先验概率更新为在E1下的后验概率P(H1|E1) P(H1|E1)=(LS1× P(H1)) / ((LS1-1) × P(H1)+1)

=(2 × 0.091) / ((2 -1) × 0.091 +1) =0.16682

由于P(E1|S1)=0.84 > P(E1),使用P(H | S)公式的后半部分,得到在当前观察S1下的后验概率P(H1|S1)和后验几率O(H1|S1)

6

……………………………………………………………最新资料推荐…………………………………………………

P(H1|S1) = P(H1) + ((P(H1|E1) – P(H1)) / (1 - P(E1))) × (P(E1| S1)– P(E1)) = 0.091 + (0.16682 –0.091) / (1 – 0.6)) × (0.84 – 0.6) =0.091 + 0.155 × 0.24 = 0.1392 O(H1|S1) = P(H1|S1) / (1 - P(H1|S1)) = 0.15807 (2) 由r2计算O(H1| S2)

先把H1的先验概率更新为在E2下的后验概率P(H1|E2) P(H1|E2)=(LS2×P(H1)) / ((LS2-1) × P(H1)+1) =(100 × 0.091) / ((100 -1) × 0.091 +1) =0.90918

由于P(E2|S2)=0.68 > P(E2),使用P(H | S)公式的后半部分,得到在当前观察S2下的后验概率P(H1|S2)和后验几率O(H1|S2)

P(H1|S2) = P(H1) + ((P(H1|E2) – P(H1)) / (1 - P(E2))) × (P(E2| S2)– P(E2)) = 0.091 + (0.90918 –0.091) / (1 – 0.6)) × (0.68 – 0.6) =0.2

O(H1|S2) = P(H1|S2) / (1 - P(H1|S2)) =0.34163

(3) 计算O(H1|S1,S2)和P(H1|S1,S2) 先将H1的先验概率转换为先验几率

O(H1) = P(H1) / (1 - P(H1)) = 0.091/(1-0.091)=0.10011

再根据合成公式计算H1的后验几率

O(H1|S1,S2)= (O(H1|S1) / O(H1)) × (O(H1|S2) / O(H1)) × O(H1) = (0.15807 / 0.10011) × (0.34163) / 0.10011) × 0.10011 = 0.53942

再将该后验几率转换为后验概率

P(H1|S1,S2) = O(H1|S1,S2) / (1+ O(H1|S1,S2)) = 0.35040 (4) 由r3计算O(H2| S3)

先把H2的先验概率更新为在E3下的后验概率P(H2|E3) P(H2|E3)=(LS3× P(H2)) / ((LS3-1) × P(H2)+1) =(200 × 0.01) / ((200 -1) × 0.01 +1) =0.09569

由于P(E3|S3)=0.36 < P(E3),使用P(H | S)公式的前半部分,得到在当前观察S3下的后验概率P(H2|S3)和后验几率O(H2|S3)

P(H2|S3) = P(H2 | ¬ E3) + (P(H2) – P(H2|¬E3)) / P(E3)) ×P(E3| S3) 由当E3肯定不存在时有

P(H2 | ¬ E3) = LN3× P(H2) / ((LN3-1) × P(H2) +1) = 0.001 × 0.01 / ((0.001 - 1) × 0.01 + 1) = 0.00001 因此有

7

……………………………………………………………最新资料推荐…………………………………………………

P(H2|S3) = P(H2 | ¬ E3) + (P(H2) – P(H2|¬E3)) / P(E3)) × P(E3| S3) =0.00001+((0.01-0.00001) / 0.6) × 0.36 =0.00600

O(H2|S3) = P(H2|S3) / (1 - P(H2|S3))

=0.00604

(5) 由r4计算O(H2|H1)

先把H2的先验概率更新为在H1下的后验概率P(H2|H1) P(H2|H1)=(LS4× P(H2)) / ((LS4-1) × P(H2)+1) =(50 × 0.01) / ((50 -1) × 0.01 +1) =0.33557

由于P(H1|S1,S2)=0.35040 > P(H1),使用P(H | S)公式的后半部分,得到在当前观察S1,S2下H2的后验概率P(H2| S1,S2)和后验几率O(H2|S1,S2)

P(H2|S1,S2) = P(H2) + ((P(H2|H1) – P(H2)) / (1 - P(H1))) × (P(H1|S1,S2)– P(H1)) = 0.01 + (0.33557 –0.01) / (1 – 0.091)) × (0.35040 – 0.091) =0.10291

O(H2|S1,S2) = P(H2| S1,S2) / (1 - P(H2|S1,S2)) =0.10291/ (1 - 0.10291) = 0.11472 (6) 计算O(H2|S1,S2,S3)和P(H2|S1,S2,S3) 先将H2的先验概率转换为先验几率

O(H2) = P(H2) / (1 - P(H2) )= 0.01 / (1-0.01)=0.01010

再根据合成公式计算H1的后验几率

O(H2|S1,S2,S3)= (O(H2|S1,S2) / O(H2)) × (O(H2|S3) / O(H2)) ×O(H2) = (0.11472 / 0.01010) × (0.00604) / 0.01010) × 0.01010 =0.06832

再将该后验几率转换为后验概率

P(H2|S1,S2,S3) = O(H1|S1,S2,S3) / (1+ O(H1|S1,S2,S3)) = 0.06832 / (1+ 0.06832) = 0.06395

可见,H2原来的概率是0.01,经过上述推理后得到的后验概率是0.06395,它相当于先验概率的6倍多。

6.11设有如下推理规则

r1: IF E1 THEN (100, 0.1) H1 r2: IF E2 THEN (50, 0.5) H2 r3: IF E3 THEN (5, 0.05) H3

且已知P(H1)=0.02, P(H2)=0.2, P(H3)=0.4,请计算当证据E1,E2,E3存在或不存在时P(Hi | Ei)或P(Hi|﹁Ei)的值各是多少(i=1, 2, 3)?

解:(1) 当E1、E2、E3肯定存在时,根据r1、r2、r3有

P(H1 | E1) = (LS1× P(H1)) / ((LS1-1) × P(H1)+1)

= (100 × 0.02) / ((100 -1) × 0.02 +1) =0.671

8

……………………………………………………………最新资料推荐…………………………………………………

P(H2 | E2) = (LS2× P(H2)) / ((LS2-1) × P(H2)+1)

= (50 × 0.2) / ((50 -1) × 0.2 +1)

=0.9921

P(H3 | E3) = (LS3× P(H3)) / ((LS3-1) × P(H3)+1)

= (5 × 0.4) / ((5 -1) × 0.4 +1)

=0.769

(2) 当E1、E2、E3肯定存在时,根据r1、r2、r3有

P(H1 | ¬E1) = (LN1× P(H1)) / ((LN1-1) × P(H1)+1)

= (0.1 × 0.02) / ((0.1 -1) × 0.02 +1) =0.002

P(H2 | ¬E2) = (LN2× P(H2)) / ((LN2-1) × P(H2)+1)

= (0.5 × 0.2) / ((0.5 -1) × 0.2 +1) =0.111

P(H3 | ¬E3) = (LN3× P(H3)) / ((LN3-1) × P(H3)+1)

= (0.05 × 0.4) / ((0.05 -1) × 0.4 +1) =0.032

6.13 设有如下一组推理规则:

r1: IF E1 AND E2 THEN A={a} (CF={0.9})

r2: IF E2 AND (E3 OR E4) THEN B={b1, b2} (CF={0.8, 0.7}) r3: IF A THEN H={h1, h2, h3} (CF={0.6, 0.5, 0.4}) r4: IF B THEN H={h1, h2, h3} (CF={0.3, 0.2, 0.1}) 且已知初始证据的确定性分别为:

CER(E1)=0.6, CER(E2)=0.7, CER(E3)=0.8, CER(E4)=0.9。

假设|Ω|=10,求CER(H)。 解:其推理过程参考例6.9 具体过程略

6.15设

U=V={1,2,3,4}

且有如下推理规则:

IFx is 少 THEN y is 多 其中,“少”与“多”分别是U与V上的模糊集,设 少=0.9/1+0.7/2+0.4/3 多=0.3/2+0.7/3+0.9/4 已知事实为 x is 较少

“较少”的模糊集为

较少=0.8/1+0.5/2+0.2/3 请用模糊关系Rm求出模糊结论。

9

……………………………………………………………最新资料推荐…………………………………………………

解:先用模糊关系Rm求出规则 IFx is 少 THEN y is 多 所包含的模糊关系Rm

Rm (1,1)=(0.9∧0)∨(1-0.9)=0.1 Rm (1,2)=(0.9∧0.3)∨(1-0.9)=0.3 Rm (1,3)=(0.9∧0.7)∨(1-0.9)=0.7 Rm (1,4)=(0.9∧0.9)∨(1-0.9)=0.7 Rm (2,1)=(0.7∧0)∨(1-0.7)=0.3 Rm (2,2)=(0.7∧0.3)∨(1-0.7)=0.3 Rm (2,3)=(0.7∧0.7)∨(1-0.7)=0.7 Rm (2,4)=(0.7∧0.9)∨(1-0.7)=0.7 Rm (3,1)=(0.4∧0)∨(1-0.4)=0.6 Rm (3,2)=(0.4∧0.3)∨(1-0.4)=0.6 Rm (3,3)=(0.4∧0.7)∨(1-0.4)=0.6 Rm (3,4)=(0.4∧0.9)∨(1-0.4)=0.6 Rm (4,1)=(0∧0)∨(1-0)=1 Rm (4,2)=(0∧0.3)∨(1-0)=1 Rm (4,3)=(0∧0.7)∨(1-0)=1 Rm (3,4)=(0∧0.9)∨(1-0)=1 即:

0.10.30.70.90.30.30.70.7 Rm0.60.60.60.61111因此有

Y'0.8,0.5,0.2,00.10.30.70.90.30.30.70.70.60.60.60.6 11110.3,0.3.0.7,0.8即,模糊结论为

Y’={0.3, 0.3, 0.7, 0.8}

6.16设

U=V=W={1,2,3,4} 且设有如下规则:

r1:IF x is F THEN y is G

10

……………………………………………………………最新资料推荐…………………………………………………

r2:IF y is G THEN z is H r3:IF x is F THEN z is H 其中,F、G、H的模糊集分别为: F=1/1+0.8/2+0.5/3+0.4/4

G=0.1/2+0.2/3+0.4/4 H=0.2/2+0.5/3+0.8/4

请分别对各种模糊关系验证满足模糊三段论的情况。

解:本题的解题思路是:

由模糊集F和G求出r1所表示的模糊关系R1m, R1c, R1g 再由模糊集G和H求出r2所表示的模糊关系R2m, R2c, R2g 再由模糊集F和H求出r3所表示的模糊关系R3m, R3c, R3g

然后再将R1m, R1c, R1g分别与R2m, R2c, R2g合成得R12 m, R12c, R12g 最后将R12 m, R12c, R12g分别与R3m, R3c, R3g比较

第7章 机器学习参

7-6 设训练例子集如下表所示: 序号 1 2 3 4 5 6 属性 x1 T T T F F F x2 T T F F T T 分类 + + - + _ _ 请用ID3算法完成其学习过程。

解:设根节点为S,尽管它包含了所有的训练例子,但却没有包含任何分类信息,因此具有最大的信息熵。即:

H(S)= - (P(+)log2 P(+) + P(-)log2 P(-))

式中

P(+)=3/6,P(-)=3/6

分别是决策方案为“+”或“-”时的概率。因此有

H(S)= - ((3/6)log2(3/6) + (3/6)log2(3/6)) =1

按照ID3算法,需要选择一个能使S的期望熵为最小的一个属性对根节点进行扩展,因此

11

……………………………………………………………最新资料推荐…………………………………………………

我们需要先计算S关于每个属性的条件熵:

H(S|xi)= ( |ST| / |S|)* H(ST) + ( |SF| / |S|)* H(SF)

其中,T和F为属性xi的属性值,ST和SF分别为xi=T或xi=F时的例子集,|S|、| ST|和|SF|分别为例子集S、ST和SF 的大小。

下面先计算S关于属性x1的条件熵: 在本题中,当x1=T时,有: ST={1,2,3} 当x1=F时,有:

SF={4,5,6}

其中,ST 和SF中的数字均为例子集S中的各个例子的序号,且有|S|=6,| ST |=| SF |=3。

由ST可知,其决策方案为“+”或“-”的概率分别是: PST(+)=2/3

PST (-)=1/3

因此有:

H(ST)= - (PST (+)log2 PST (+) + PST (-)log2 PST (- ))

= - ((2/3)log2(2/3) + (1/3)log2(1/3)) =0.9183

再由SF可知,其决策方案为“+”或“-”的概率分别是: PSF (+)=1/3

PSF (-)=2/3

则有:

H (SF)= - (PSF (+)log2 PSF (+) + PSF (-)log2 PSF (- ))

= - ((1/3)log2(1/3)+ (2/3)log2(2/3))

=0.9183

将H(ST)和H (SF)代入条件熵公式,有:

H(S|x1)=(|ST|/|S|)H(ST)+ (|SF|/|S|)H(SF) =(3/6)﹡0.9183 + (3/6)﹡0.9183

=0.9183

下面再计算S关于属性x2的条件熵: 在本题中,当x2=T时,有: ST={1,2,5,6} 当x2=F时,有:

SF={3,4}

其中,ST 和SF中的数字均为例子集S中的各个例子的序号,且有|S|=6,| ST |=4,| SF |=2。

由ST可知: PST (+) = 2/4

P ST (-) = 2/4

则有:

H(ST)= - (P ST (+)log2 P ST (+) + P ST (-)log2 P ST (- ))

= - ((2/4)log2(2/4) + (2/4)log2(2/4))

12

……………………………………………………………最新资料推荐…………………………………………………

=1

再由SF可知: P SF (+)=1/2

P SF (-)=1/2

则有:

H(SF)= - (P(+)log2 P(+) + P(-)log2 P(- ))

= - ((1/2)log2(1/2)+ (1/2)log2(1/2))

=1

将H(ST)和H (SF)代入条件熵公式,有:

H(S|x2)=(|ST|/|S|)H(ST)+ (|SF|/|S|)H(SF) =(4/6)﹡1 + (2/6)﹡1

=1

可见,应该选择属性x1对根节点进行扩展。用x1对S扩展后所得到的部分决策树如下图所示。

S x1=T (+,+,-) x1=F (+,-,-)

在该决策树中,其2个叶节点均不是最终决策方案,因此还需要继续扩展。而要继续扩展,只有属性x2可选择,因此不需要再进行条件熵的计算,可直接对属性x2进行扩展。

对x2扩展后所得到的决策树如下图所示:

S 扩展x1后的部分决策树

x1=T (+,+,-) x2=T (+,+) x2=F (+,-,-) x2=F x2=T (-) (-,-) x2=F (+)

7-9假设w1(0)=0.2, w2(0)=0.4, θ(0)=0.3, η=0.4,请用单层感知器完成逻辑或运算的学习过程。

解:根据“或”运算的逻辑关系,可将问题转换为: 输入向量:X1=[0, 0, 1, 1] X2=[0, 1, 0, 1] 输出向量:Y=[0, 1, 1, 1]

由题意可知,初始连接权值、阈值,以及增益因子的取值分别为:

13

扩展x2后得到的完整决策树

……………………………………………………………最新资料推荐…………………………………………………

w1(0)=0.2, w2(0)=0.4, θ(0)=0.3,η=0.4

即其输入向量X(0)和连接权值向量W(0)可分别表示为: X(0)=(-1, x1 (0), x2 (0))

W(0)=(θ(0), w1(0), w2 (0))

根据单层感知起学习算法,其学习过程如下:

设感知器的两个输入为x1(0)=0和x2(0)=0,其期望输出为d(0)=0,实际输出为:

y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-θ(0)) =f(0.2*0+0.4*0-0.3)=f(-0.3)=0

实际输出与期望输出相同,不需要调节权值。

再取下一组输入:x1(0)=0和x2(0)=1,其期望输出为d(0)=1,实际输出为:

y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-θ(0)) =f(0.2*0+0.4*1-0.3)=f(0.1)=1

实际输出与期望输出相同,不需要调节权值。

再取下一组输入:x1(0)=1和x2(0)=0,其期望输出为d(0)=1,实际输出为:

y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-θ(0)) =f(0.2*1+0.4*0-0.3)

=f(-0.1)=0

实际输出与期望输出不同,需要调节权值,其调整如下:

θ(1)=θ(0)+η(d(0)-y(0))*(-1)=0.3+0.4*(1-0)*(-1)= -0.1 w1(1)=w1(0)+η(d(0)-y(0))x1(0)=0.2+0.4*(1-0)*1=0.6 w2(1)=w2(0)+η(d(0)-y(0))x2(0)=0.4+0.4*(1-0)*0=0.4

再取下一组输入:x1(1)=1和x2(1)=1,其期望输出为d(1)=1,实际输出为:

y(1)=f(w1(1) x1(1)+ w2(1) x2(1)-θ(1)) =f(0.6*1+0.4*1+0.1)

=f(1.1)=1

实际输出与期望输出相同,不需要调节权值。

再取下一组输入:x1(1)=0和x2(1)=0,其期望输出为d(0)=0,实际输出为:

y(1)=f(w1(1) x1(1)+ w2(1) x2(1)-θ(1)) =f(0.6*0+0.4*0 + 0.1)=f(0.1)=1

实际输出与期望输出不同,需要调节权值,其调整如下:

θ(2)=θ(1)+η(d(1)-y(1))*(-1)= -0.1+0.4*(0-1)*(-1)= 0.3 w1(2)=w1(1)+η(d(1)-y(1))x1(1)=0.6+0.4*(0-1)*0=0.6 w2(2)=w2(1)+η(d(1)-y(1))x2(1)=0.4+0.4*(0-1)*0=0.4

再取下一组输入:x1(2)=0和x2(2)=1,其期望输出为d(2)=1,实际输出为:

y(2)=f(w1(2) x1(2)+ w2(2) x2(2)-θ(2)) =f(0.6*0+0.4*1 - 0.3)=f(0.1)=1 实际输出与期望输出相同,不需要调节权值。

再取下一组输入:x1(2)=1和x2(2)=0,其期望输出为d(2)=1,实际输出为:

y(2)=f(w1(2) x1(2)+ w2(2) x2(2)-θ(2)) =f(0.6*1+0.4*0 - 0.3)=f(0.3)=1

14

……………………………………………………………最新资料推荐…………………………………………………

实际输出与期望输出相同,不需要调节权值。

再取下一组输入:x1(2)=1和x2(2)=1,其期望输出为d(2)=1,实际输出为:

y(2)=f(w1(2) x1(2)+ w2(2) x2(2)-θ(2)) =f(0.6*1+0.4*1 - 0.3)=f(0.7)=1 实际输出与期望输出相同,不需要调节权值。

至此,学习过程结束。最后的得到的阈值和连接权值分别为:

θ(2)= 0.3 w1(2)=0.6 w2(2)= 0.4 不仿验证如下: 对输入:“0 0”有y=f(0.6*0+0.4*0-0.3)=f(-0.3)=0 对输入:“0 1”有y=f(0.6*0+0.4*1-0.3)=f(0.1)=1 对输入:“1 0”有y=f(0.6*1+0.4*0-0.3)=f(0.3)=1 对输入:“1 1”有y=f(0.6*1+0.4*1-0.3)=f(0.7)=1 完

15

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- dfix.cn 版权所有 湘ICP备2024080961号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务