搜索
您的当前位置:首页正文

参考文献格式

来源:抵帆知识网


参 考 文 献

[1]

Pollard D D. Aydin.A. Progress in Understanding Joint over the Past

Century [J].Bull.Geol.Soc.Am.100, 1988: 1811-1204.

[2] 唐永,梅廉夫,唐文军等.裂缝性储层属性分析与随机模拟[J].西南石油学院学

报,2010,32(4):56-66.

[3] 王平.含油气盆地构造力学原理[M].北京:石油工业出版社,2001.

[4] 刘漪厚.扶余裂缝型低渗透砂岩油藏[M].北京:石油工业出版社,1997.

[5] 袁明生,潘愚,童亨茂.低渗透裂缝性油藏勘探[M].北京:石油工业出版社,2000.

[6] 李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1997.

[7] Nam Hong Tran. Characterization and modeling and naturally fractured

reservoirs [D]. The University of New South Wales.2004.

[8] National Research Council. Groundwater at Yucca Mountain: How High

Can It Rise? [M].National Academy Press, Washington, 1992, D.C., USA.

[9] Laubach, S., Marrett, R. and Olson, J. New Directions in Fracture

Characterization [J]. The Leading Edge, 2000:704-711.

[10] Narayan, S.P., Naseby, D., Yang, Z. and Rahman, S.S. Petroleum and Hot

Dry Rock: two types of energy sharing commonalities [J]. Journal of the Australian Petroleum Production and Exploration Association Ltd., 1998, 830-848.

[11] 袁士义,宋新民,冉启全. 裂缝性油藏开发技术[C].石油工业出版社2004.

[12] Pollard D D. Aydin A. Progress in Understanding Jointing over the Past Century [J]. Bull. Geol. Soc. Am. 100, 1988:1811~1204.

[13] Dennis J G. International Tectonic Dictionary [J]. Am. Assoc. Petrol. Geol., Mem. 7, 1967: 196.

[14] Lorenz J C, Teufel L W, Warpinski N R. Regional fracturesⅠ: A mechanism for the formation of regional fractures at depth in flat-lying reservoirs [J]. AAPG Bull. ,1991, 75(11): 1714~1737.

[15] Friedman M, Stearns D W. Relations between stresses inferred from calcite twin lamellae and macro-fractures [J]. Teton Anticline, Montana. Geol. Soc. Amer. Bull. ,1971, 82(11): 3151~3162.

[16] Nelson R A. Geologic analysis of naturally fractured reservoirs [M]. Houston, Gulf Publishing CoMPany, 1985.

[17] Stearns D W, Friedman M. Reservoirs in fractured rock [J]. American Association of Petroleum Geologists, 1972: 82-106.

[18] Haldorsen, H.H. and Damsleth, E. Challenges in Reservoir

Characterization [J]. AAPG Bulletin, 1993, 77(4):541-551.

[19] Nelson, R.A. Geologic Analysis of Naturally Fractured Reservoirs [M]. Second Edition. Gulf Professional Publishing, Boston, USA. 2001.

[20] Narr W. Suppe J. Joint Spacing in Sedimentary Rocks [J]. J.Struct.Geol.,1991,13(9): 1037~ 1048.

[21] Nelson R A. Geological Analysis of Naturally Fractured Reservoirs [M]. Houston: Gulf Publishing CoMPany, 1985.

[22] Nelson, R.A. Geologic Analysis of Naturally Fractured Reservoirs [M]. Second Edition. Gulf Professional Publishing, Boston, USA. 2001.

[23] Gringarten, A.C., Witherspoon, P.A. and Ohnishi, Y. Theory of Heat Extraction from Fractured Hot Dry Rocks [J]. Journal of Geophysical Research, 1975, 80(8):1120-1124.

[24] Bazant, Z.P. and Ohtsubo, H. Geothermal Heat Extraction by Water Circulation through a Large Fracture in Dry Hot Rock Mass [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1978, 2:317-327.

[25] Shibuya, Y., Sekine, H., Takahashi, Y. and Abe, H. Multiple Artificial Geothermal Fractures in a Hot Dry Rock Mass for Extraction of Heat [J]. Journal of Energy Resources Technology, 1985, 107:274-279.

[26] Bodvarsson, G.S. Reservoir Development Strategy for Hot Water Reservoirs with Emphasis on Reservoir Modeling [J]. Geothermal Resources Council Bulletin, 1988, 7:68-90.

[27] Brown, S.R. Fluid Flow through Rock Joints: The Effect of Surface Roughness [J]. Journal of Geophysical Research, 1987, 92(B2):1337-1347.

[28] Watanabe, K. and Takahashi, H. Fractal Geometry Characterization of Geothermal Reservoir Fracture Networks [J]. Journal of Geophysical Research, 1995, 100(B1):521-528.

[29] Deshowitz W.S. and Einstein H.H. Characterizing Rock Joint Geometry with Joint System Models [J]. Rock Mechanical Rock Engineering, 1988, 21(1):21-52.

[30] Willis-Richards, J. Progress toward a Stochastic Rock Mechanics Model of Engineered Geothermal Systems [J]. Journal of Geophysical Research, 1996, 101(B8):17481-17496.

[31] Hossain, M.M. Reservoir Stimulation by Hydraulic Fracturing: Complexities and Remedies with reference to Initiation and Propagation of Induced and Natural Fractures [D]. PhD dissertation, 2001, School of Petroleum Engineering, The University of New South Wales, Sydney, Australia, Chapter 6.

[32] Tamagawa, T., Matsuura, T., Anraku, T., et al. Construction of Fracture

Network Model Using Static and Dynamic Data[C]. SPE77741, 2002, Society of Petroleum Engineers Annual Technical Conference and Exhibition, Texas, USA, Sept.29 - Oct.2.

[33] Deutsch, C.V. and Cockerham, P.W. Practical Considerations in the Application of Simulated Annealing to Stochastic Simulation [J]. Mathematical Geology, 1994, 26(1), pp.67-82.

[34] Soares, A., Brusco, A. and Guimaraes, C. Simulation of Naturally Fractured Fields [J]. In: Baafi, E.Y. and Schofield, N.A. (eds), Geostatistics Wollongong. Australia, 1996, 1433-1441.

[35] Zellou, M. and Ouenes, A. Integrated Fractured Reservoir

Characterization using Neural Networks and Fuzzy Logic: Three Case Studies [J]. Journal of Petroleum Geology, 2001, 24(4).

[36] Wu H. Pollard D D. Propagation of a Set of Opening-Mode Fractures in Layered

Brittle

Materials

under

Unitarian

Strain

Cycling

[J].J.Geophs.Res.,1992,97(B3): 3381~3396.

[37] Wu H. Pollard D D. Effect of Strain Rate On a set of Fractures [J]. J. Rock. Mech. Min. Sci. &Geomech, Abstr.1993, 30(7):701~704.

[38] Von Golf-Racht著.陈钟祥译.石油科学进展.裂缝油藏工程基础[M].北京:石油工业出版社,1986.

[39] Dershowitz, W.S., H.H. Herda. Interpretation of Fracture Spacing and Intensity [C]. Proc. 32nd US Rock Mech. Symp., Santa Fe, NM, 1992, 757-766.

[40] Guo Z. Stephen A. et al. Statistical Analysis of Surface Lineaments and Fractures for Characterizing Naturally Fractures Reservoirs [C]. Presented at the SPE International Petroleum Conference of Houston, Texas, 2-4 March, 1997.

[41] Huang Q. Angelier J. Fracture Spacing and Its Relation to Bed Thickness [J]. Geol. May., 1989, 126(4):355~362.

[42] Narr W. Currie J B. Origin of Fracture Porosity-Example from Altamont Field, Utah [J]. Am. Assoc.Petrol.Geol.Bull., 1982, 66(9):1231~1247.

[43] Raven K G. Gale J E. Water Flow in a Natural Rock Fracture as a Function of Stress and Sample Size [J]. J. Rock Mech. Min. Sci & Geomech. Abstr. , 1985, 22(4):251~261.

[44] Wilson T. H. Scale Transitions in Fracture and Active Fault Networks [J]. Mathematical Geology, 2001, 33(5):591-613.

[45] Zhang S. et al. 3-D Distribution of Fracture Surface and Stress-Sensitivity Analysis for Naturally Fractured Reservoirs [C]. Presented at the SPE International Petroleum Conference of Houston,Texas,2-4 March,1997.

[46] Howard J H. Distribution of Natural Fracture System for Quantitative Use

in Petroleum Geology [J].Am.Assoc.Petrol.Geol.Bull.1990,74(2).

[47] Davison, C.C. URL Drawdown Experiment and Comparison with Models [J]. Atomic Energy of Canada Ltd., TR375, Pinawa, Manitoba, 1985.

[48] Hsieh, P.A. and Neuman, S.P. Field Determination of the

Three-Dimensional Hydraulic Conductivity Tensor of Anisotropic Media [J]. Water Resources Research, 1985, 21(11):1655~1666.

[49] Carrera, J., Heredia, J., Vomvoris, S. and Hufschmied, P. Modeling of Flow on A Small Fractured Monzonitic Gneiss Block [J]. In: Neuman, S.P. and Neretnieks, International Association of Hydro-geologists, Hanover, 1990, pp.115-167

[50] Pruess, K. and Narasimhan, T.N. Numerical Modeling of Multiphase and Non-isothermal Flows in Fractured Media. Symposium Conference on Fluid Flow in Fractured Rocks [D], Georgia State University, 1988, May 15-18

[51] Reeves, M., Freeze, G.A., Kellel, V.A., et al. Regional Double Porosity Solute Transport in the Culebra Dolomite under Brine-Reservoir-Breach Release Conditions: an Analysis of Parameter Sensitivity and Importance [M]. Sandia National Laboratories, 1991, SAND 89-7069, Albuquerque, N.M.

[52] Ganzer, L.J. Simulating Fractured Reservoirs Using Adaptive Dual Continuum [C].SPE75233, Department of Energy Thirteenth Improved Oil Recovery Symposium, Oklahoma, USA, 2002, Apr.13-17.

[53] Lisle, J.L. (1994) Detection of Zones of Abnormal Strains in Structures using Gaussian Curvature Analysis [J]. American Association of Petroleum Geologists Bulletin, 1994, 78(12):1811-1819.

[54] Chambers, K. T., DeBaun, D. R., Durlofsky, L. J., et al. Geologic Modeling, Up-scaling and Simulation of Faulted Reservoirs Using Faulted Stratigraphic Grids[C]. SPE51889, 1999, Society of Petroleum Engineers Reservoir Simulation Symposium, Texas, USA, Feb.14-17.

[55] Heffer, K.J., King, P.R. and Jones, A.D.W. Fracturing Modeling as Part of Integrated Reservoir Characterization [C]. SPE53347, 1999, Society of Petroleum Engineers Middle East Oil Show, Bahrain, Feb.20-23.

[56] Hennings, P.H., Olson, J.E. and Thompson, L.B. Combining Outcrop Data and Three-Dimensional Structural Models to Characterize Fractured Reservoirs: An Example from Wyoming [J]. American Association of Petroleum Geologists Bulletin, 2000, 84(6):830-849.

[57] Ouenes, A. and Hartley, L.J. Integrated Fractured Reservoir Modeling Using Both Discrete and Continuum Approaches [C]. SPE62939, 2000 Society of Petroleum Engineers Annual Technical Conference and Exhibition, Dallas, USA, Oct.1-4.

[58] Rawnsley K. and Wei L. Evaluation of a New Method to Build Geological Models of Fractured Reservoirs Calibrated to Production Data [J]. Petroleum

Geoscience, 2001, 7():23-33.

[59] Neuman, S.P. and Depner, J.S. Use of Variable Scale Pressure Test Data to Estimate the Log Hydraulic Conductivity Covariance and Dispersivities of Fractured Granites near Oracle, Arizona [J]. Journal of Hydrology, 1988, 102(1-4):475-501.

[60] Doughty, C. and Karasaki, K. An Effective Continuum Model for Flow and Transport in Fractured Rock [C]. Berkeley Lap Annual Report, USA, 2000.

[61] Pistre, S., Bangoy, L.M. and Rives, T. A New Approach for the Prediction of Unexposed Fractured Reservoirs: A Case Study in Millas Granite (French Pyrenees) [J]. Hydrological Sciences Journal, 40(3):351-365.

[62] Tamagawa, T., Tezuka, K. Validation of Clustering of Fractures in Discrete Fracture Network Model by Using Fracture Density Distributions Along Boreholes [C]. SPE90342, Society of Petroleum Engineers Annual Technical Conference and Exhibition Held in Houston, Texas, U.S.A., 26-29 September 2004.

[63] Escuder Viruete, J., Carbonell, R., and Marti, D.et al. 3-D Stochastic Modeling and Simulation of Fault Zones in the Albalá Granitic Pluton, SW Iberian Vatican Massif [J]. Journal of Structural Geology, 2003, 25(9):1487-1506.

[64] Long, J.C.S., Doughty, C., Hestir, K. and Martel, S. Modeling Heterogeneous And Fractured Reservoirs With Inverse Methods Based On Iterated Function System. In: Linville, B. (eds.), Reservoir Characterization III. 1992, Pennell

Books, Tulsa, USA.

[65] Jensen, O.K., Bresling, S., Christensen, O.W., Rasmussen, F.O., Foged, N. and Petersen, K. Natural Fracture Distribution in Reservoirs Modeled by Back-stripping and Finite Element Stress Analysis. SPE18429, 1989, Society of Petroleum Engineers Symposium on Reservoir Simulation, Texas, USA, Feb.6-8.

[66] Olson, J.E., Qiu, Y., Holder, J. and Rijken, P. Constraining the Spatial Distribution of Fracture Networks in Naturally Fractured Reservoirs Using Fracture Mechanics and Core Measurements[C]. SPE71342, 2001, Society of Petroleum Engineers Annual Technical Conference and Exhibition, Louisiana, USA, Sep.30 - Oct.3.

[67] Cacas, M.C., Daniel, J.M. and Letouzey, J. Nested Geological Modeling Of Naturally Fractured Reservoirs[J]. Petroleum Geoscience, 2001, 7:543-552.

[68] Jensen, O.K., Bresling, S., Christensen, O.W., Rasmussen, F.O., Foged, N. and Petersen, K. Natural Fracture Distribution in Reservoirs Modelled by Back-stripping and Finite Element Stress Analysis. SPE18429, 1989, Society of Petroleum Engineers Symposium on Reservoir Simulation, Texas, USA, Feb.6-8.

[69] Anraku, T., Namikawa, T., Herring, T., et al. Stochastic Fracture Modeling of the Yufutsu Field[C]. SPE59400, 2000, Society of Petroleum Engineers Asia Pacific Conference on Integrated Modeling for Asset Management, Yokohama, Japan, Apr.25-26.

[70] Lanyon, G.W., Batchelor, A.S. and Ledingham, P. Results from A Discrete Fracture Network Model of A Hot Dry Rock System[C]. Proceedings of 18th Workshop on Geothermal Reservoir Engineering Stanford University, 1993, Stanford, California, USA, Jan.26-28.

[71] Lefranc, M., Carrillat A. Fractured Basement Characterization from Multi-Attributes Guided Integrated Continuous Fracture Modeling [J]. IPTC12055, International petroleum Technology Conference, Kuala Lumpur, Malaysia, 3-5 December 2008.

[72] Wen, R. and Sinding-Larsen, R. Stochastic Modeling and Simulation of Small Faults by Marked Point Processes and Kriging [J]. In: Baafi, E.Y. and Schofield, N.A. (eds), Geostatistics Wollongong. Australia, 1996, 398-414.

[73] Parney, R., Cladouhos , T., La Pointe, P., et al. Fracture and Production Data Integration Using Discrete Fracture Network Models for Carbonate Reservoir Management, South Oregon Basin Field, Wyoming[J]. SPE60306, 2000, Society of Petroleum Engineers Rocky Mountain Regional/Low Permeability Reservoirs Symposium and Exhibition, Colorado, USA, Mar.12-15.

[74] Anraku, T., Namikawa, T., Herring, T., Jenkins, I., Price, N. and Trythall, R. (2000) Stochastic Fracture Modeling of the Yufutsu Field [C]. SPE59400, Society of Petroleum Engineers Asia Pacific Conference on Integrated Modeling for Asset Management, Yokohama, Japan, Apr.25-26.

[75] Robert Parney, Tricon Geophysics; Nixon Lange, et al. Comparison of Seismic Brittleness And Anisotropy to Micro-seismic In the Waltman Shale[C]. SEG Annual Meeting, Denver, Colorado, October 17 - 22, 2010.

[76] Al Qassab, H.M., Al Khalifa, M.A., Al-Ali, Z., et al. New Integrated 3D-Fracture Modeling and Flow Simulation Study: A Giant Saudi Arabian Carbonate Reservoir. SPE78295, 2002, Society of Petroleum Engineers EUROPEC, Aberdeen, Scotland, Oct.29-31.

[77] Swaby, P.A. and Rawnsley, K.D. An Interactive 3D Fracture Modeling Environment[C]. SPE36004, 1996, Society of Petroleum Engineers Petroleum Computer Conference, Texas, USA, June 2-5.

[78] Cacas, M.C., Ledoux, E., de Marsily, G. and Tillie, B. Modeling Fracture Flow with a Stochastic Discrete Fracture Network: Calibration and Validation [J]. Water Resources Research, 1990, 26(3):479-489.

[79] Rawnsley, K. and Wei, L. Evaluation of a New Method to Build Geological Models of Fractured Reservoirs Calibrated to Production Data [J]. Petroleum Geoscience, 2001, 7:23-33.

[80] Zellou, A., Ouenes, A. and Banik, A. Improved naturally fractured reservoir characterization using neural networks, geo-mechanics and 3-D seismic. SPE30722, 1995, Society of Petroleum Engineers Annual Technical Conference and Exhibition, Dallas, USA, Oct. 22-25.

[81] Cebastiant, A. Fracture Network Characterization of Naturally Fractured Reservoir Using Dynamical System Concept and Artificial Neural Network [C]. Society of Petroleum Engineers Annual Technical Conference and Exhibition, 1997, Omega (2), Texas, USA, Oct.5-8.

[82] Ouenes, A., Zellow, A., Terra Nova, et al. Practical use of Neural networks in Tight Gas Fractured Reservoirs: Application to the San Juan Basin[C]. SPE39965 Rocky Mountain Regional/Low-Permeability Reservoirs Symposium, Denver, Colorado, 5-8 April 1998.

[83] Ouenes, Ahmed and Bhagavan, Srinivasa. Application of Simulated Annealing and Other Global Optimization Methods to Reservoir Description: Myths and Realities[C]. SPE28415 Annual Technical Conference and Exhibition, New Orleans, Louisiana, 25-28 September 1994.

[84] Boerner, S., Gray, D., Zellou, A.M. and Schnerk, G. Employing Neural Networks to Integrate Seismic and Other Data for the Prediction of Fracture Intensity [C]. SPE84453, 2003,Society of Petroleum Engineers Annual Technical Conference and Exhibition, Colorado, USA, Oct.5-8.

[85] Shen, F. and Ouenes, A. Seismically Driven Integrated Fracture Modeling[C]. SPE84460, 2003, Society of Petroleum Engineers Annual Technical Conference and Exhibition, Colorado, USA, Oct.5-8.

[86] Barman, I., Ouenes, A., and Wang, M. Fractured reservoir characterization

using streamline-based inverse modeling and artificial intelligence tools [C]. SPE63067, 2000 Society of Petroleum Engineers Annual Technical Conference and Exhibition, Dallas, USA, Oct.1-4.

[87] Mauldon A.D. et al. An Inverse Technique for Developing Models for Fluid Flow in Fracture Systems Using Simulated Annealing [J]. Water Resources Research, 1993, 29(11):3775-3789.

[88] Sahimi, M. New Models for Natural and Hydraulic Fracturing of Heterogeneous Rock. SPE29648, 1995, Society of Petroleum Engineers Western Regional Meeting, California, USA, Mar.8-10.

[89] Day-Lewis, F.D., Hsieh, P.A. and Gorelick, S.M. Identifying Fracture Zone Geometry Using Simulated Annealing and Hydraulic-Connection Data [J]. Water Resources Research, 2000, 36(7):1707-1721.

[90] Guerreiro, L., Silva, A.C., Alcobia, V. and Soares, A. Integrated Reservoir Characterization of a Fractured Carbonate Reservoir [J]. SPE58995, 2000, Society of Petroleum Engineers International Petroleum Conference and Exhibition, Villahermosa, Mexico, Feb.1-3.

[91] Nakao, S., Najita1, J. and Karasaki1, K. Hydraulic Well Testing Inversion for Modeling Fluid Flow in Fractured Rocks Using Simulated Annealing: A Case Study at Raymond Field Site, California [J]. Journal of Applied Geophysics, 2000, 45(3):203-223.

[92] Gauthier, B.D.M., Garcia, M. and Daniel, J-M. (2002) Integrated Fractured Reservoir Characterization: a Case Study in a North Africa Field [J]. Society of Petroleum Engineers Reservoir Evaluation & Engineering, 5(4):284-294.

[93] Soares, A., Brusco, A. and Guimaraes, C. Simulation of Naturally Fractured Fields [J]. In: Baafi, E.Y. and Schofield, N.A. (eds), Geostatistics Wollongong. Australia, 1996, 1433-1441.

[94] Sen, M. and Stoffa, P.L. (1995) Global Optimization Methods in Geophysical Inversion [J]. Elsevier, Amsterdam, Holland, 1995: 79-123.

[95] Deutsch C.V. and Cockerham P.W. Practical Considerations in the Application of Simulated Annealing to Stochastic Simulation [J]. Mathematical Geology, 1994, 26(1):67-82.

[96] 黄天虎,段永刚.气井产能预测综述[J].石油地质与工程,2007,(02):43-47.

[97] Cullender M H. The isochronal performance method of deter-mining the flow characteristics of wells [J]. Trans. AIME, 1955, 204:137-142.

[98] Katz D L, et al. Handbook of natural gas engineering [M].New york City: McGraw-Hill Book Co. Inc, 1959:448.

[99] 唐洪俊,徐春碧,唐皓. 气井产能预测方法的研究与进展[J]. 特种油气藏,2011,(5):11-15.

[100] Ezeudembah A S, Dranchuk P M. Flow mechanism of Forchheimer’s cubic equation in high-velocity radial gas flow through porous media[C].SPE, 10979, 1982.

[101] 唐洪俊.高产气井产能试井方法研究[J].钻采工艺,1998,21(3):36-39.

[102] 唐洪俊.三项式方程的推导和应用研究[J].断块油气田,1997,6(6):23-25.

[103] 杨筱璧,李祖友,等.高速非达西流气井产能方程的新形式[J].特种油气藏,2008,15(3):74-75.

[104] 严文德,郭肖,孙雷.一个新的低渗透气藏气井产能预测公式[J].天然气工业,2006,26(1):88-89.

[105] 葛家理.油气层渗流力学[M].北京:石油工业出版社,1982:29-31.

[106] Estes R K,Fulton P F. Gas slippage and permeability measurements [J]. JPT, 1956,8(10):69-73.

[107] 吴凡,孙黎娟,乔困安.气体渗流特征及启动压力规律的研究[J].天然气工业,2001,2l(1):82-84.

[108] 刘晓旭,等.低渗砂岩气藏气体特殊渗流机理实验研究与分析[J].特种油气藏,2001,8(1):80-83.

[109] 朱维耀,宋洪庆,何东博,等.含水低渗气藏低速非达西渗流数学模型及产能方程研

究[J].天然气地球科学,2008,19(5)685-689.

[110] 杨满平,王正茂,等.变形介质气藏气井稳定产能方程及无阻流量[J].试采技术,2003,24(3):11-13.

[111] 刘文涛,王洪辉,等.考虑束缚水影响的变形介质气藏产能方程[J].天然气工业,2009,29(3):82-84.

[112] 刘文涛,王洪辉,等.考虑束缚水影响的变形介质气藏产能方程[J].天然气工业,2009,29(3):82-84.

[113] 李晓平,刘启国,赵必荣.水平气井产能影响因素分析[J].天然气工业,1998,18(2):53-56.

[114] 刘想平.气藏水平井稳态产能计算新模型[J].天然气工业,1998,18(1):37-40.

[115] 何凯.气井产能评价资料在水平井优化设计中的应用[J].天然气工业,2003,23(增刊):118-119.

[116] 陈志海,马新仿,郎兆新.气藏水平井产能预测方法[J].天然气工业,2006,26(2):98-99.

[117] 崔丽萍,何顺利,宁波.水平气井产能公式探讨[J].西南石油大学学报,2009,31(2):121-124.

[118] 詹沁泉,王德龙,贺鹗等.变形介质气藏水平井产能公式改进[J].长江大学学

报,2009,6(1):203-205.

[119] 陈明强,张明禄,蒲春生.变形介质低渗透油藏水平井产能特征[J].石油学报,2007, 28(1):107-110.

[120] 谭廷栋.裂缝性油气层产能预测方法的探索[J].测井技术,1986,10(4):1-9.

[121] 张荣义,李瑜.裂缝性储层试油层段选择的方法探讨[J].天然气工业,2001, 21(1):90-93.

[122] 匡建超,徐国盛,王允诚等.致密碎屑岩储层裂缝和产能预测的单井建模—以XZ气田沙溪庙组为例[J].矿物岩石,2001,21(2):62-67.

[123] 匡建超,王允诚,胡远来等.致密碎屑岩储层裂缝和产能的横向预测—以XZ气田沙溪庙组为例[J].矿物岩石,2001,21(4):76-78.

[124] 何绪全.测井新技术在川东北飞仙关组鲕滩气藏产能预测中的应用[J].天然气勘探与开发,2002,25(4):43-47.

[125] 赵军,祁兴中,夏宏权,刘红歧.测井资料在碳酸盐岩洞-裂缝型储层产能评价中的应用[J].现代地质,2003,17(1):99-104.

[126] 赵辉,司马立强,颜其彬等.川中大安寨段裂缝评价及储层产能预测方法[J].测井技术,2008,32(3):277-280.

[127] 郑建东,朱建华,卢艳.兴城地区火山岩储层孔洞裂缝发育与产能关系研究[J].石油

天然气学报,2008,30(6):82-86.

[128] 程建,杨鸿飞,高进发.成像测井在川东高峰场构造长兴组生物礁评价中的应用——以峰18井为例[J].天然气勘探与开发,2009,32(2):6-9.

[129] 郭大立,凌立苏,许江文,李雪彬,张天翔.基于神经网络的储集层改造效果评价技术及应用[J].新疆石油地质,2011,32(2):181-182.

[130] 朗兆新,张丽华,程林松.压裂水平井产能研究[J].石油大学学报(自然科学版),1994,18(2):43-46.

[131] 赵金洲,郭建春.水力压裂效果动态预测[J].石油钻采工艺,1995,17(6):55-58.

[132] 蒋廷学,郎兆新,单文文.低渗透油藏中压裂井动态预测方法研究综述[J].世界石油工业,2000,7(3):50-53.

[133] 汪永利,蒋廷学,曾斌.气井压裂后稳态产能的计算.石油学报.2003,24(4):65-68.

[134] 张绍辉,尹洪军,吕杭.裂缝性低渗透气藏垂直裂缝井产能分析[J].科学技术与工程,2010,10(8):1848-1851.

[135] 尹洪军,刘宇.低渗透油藏扭裂井产能分析[J].新疆石油地质,2005,26(3):285-286.

[136] 何应付,徐联玉.低渗透气藏压裂井产能分析[J].特种油气藏,2006,13(5):59-62.

[137] Raymond I R. Binder G G. Productivity of wells in vertically fractured

damaged formations [C].SPE 1454.1967.

[138] Agarwal R G, et al. Evaluation and performance prediction of low-permeability gas wells stimulated by massive hydraulic fracturing [J].Journal of Petroleum Technology, 1979, 31(3):362-372.

[139] Cinco L H, Samaniego V F, Dominguez A N. Effect of wellbore storage and damage on the transient pressure behavior of vertical fractured we11s [C].SPE 6014.1977.

[140] Poe B D Jr. Conger J G. Farkas R, et al. Advanced fractured well diagnostics for production data analysts[C].SPE 56750, 1999.

[141] Poe B D Jr. Production performance evaluation of hydraulically fractured wells [C].SPE 59758, 2000.

[142] 蒋廷学,单文文.垂直裂缝井稳态产能的计算[J].石油勘探与开发,2001.28(2):61-63.

[143] 杨龙,王晓东.垂直裂缝井产量递减曲线研究[J].天然气工业,2003,23(5):76-78.

[144] 刘德华.裂缝孔隙介质储层产能确定方法[J].大庆石油地质与开发,2008,27(4):57-60.

[145] 岳建伟.含多条垂直裂缝的压裂气井产能研究[J].大庆石油地质与开发,2004,23(3):46-48.

[146] 付春权.低速非达西渗流垂直裂缝井试井分析[J].大庆石油地质与开发,2007,26(3):53-56.

[147] 程博.定井底流压下有限导流垂直裂缝井的理论模型[J].大庆石油地质与开发, 2003, 22 (3):55-57.

[148] 刘宇.复杂条件下垂直裂缝井压力动态及产能研究[D].大庆:大庆石油学院,2006.

[149] 冯金德.裂缝性低渗油藏等效连续介质模型[J].石油钻采技术,2007,35(5):94-97.

[150] 刘建军.裂缝性砂岩油藏渗流的等效连续介质模型[J].重庆大学学报,2000,23(增刊):158-160.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top