V
π:V→P1
V/P1
V
Q
χ:V−−→V′,
V′
V′
χ∗∈BirV
c(Σ)≤c(Σ′),
Σ=(χ◦χ∗)∗Σ′
χ◦χ∗
:V−−χ∗
→V−−χ
→V′,
|·|
c(·)
c(Λ)=sup{ε∈Q+D∈Λ
|D+εK∈A1+(·)},
ΛK
A1+(·)⊂A1(·)⊗R
χ∗
V
=idQ
π:V→P1
V
V
π:V→P1
V
V
PicV=ZKV⊕π∗PicP1
Σ′
Σ′
V
V
V
Ft=π−1(t)
l∈Z+
t∈P1F∈PicV
D∼−nKV+lF
KV∈IntA1+V.
V
V
V
π
χ
τ:W→T
χ:V−−→W
Vπ↓P
−−→W
↓τ−−→
χ
1
α
T
τ:W→T
τ∗PicP1χ:V−−→W
α:P1→T
PicW=ZKW⊕
χ
V
V
V/P
1
V/P1
C
P
PM+1
G=P(H0(P,OP(m)))
2l
P
m3≤m≤M−1Wm+l=M+1
F={F|σ:F→G}
2:1
W∩GW∈W
F∈Fsm
regFsm⊂Fsm
Fsm⊂F
(G,W∩G)
G∈G
PicF=ZKF
F∈Fsm
FregF∈Fsm
reg
sm
codimFreg
sm(Fsm\\Fsm
)≥2.Fsing=F\\FsmcodimFFsing=1
Fregsing
codimF(Fsing\\Freg
sing)≥2.
F
V/P1
Freg=Fsmreg
∪Fregsing.
codimF(F\\Freg)≥2P1→F
F
Ftreg
1
∈Ft∈P1
V/PV/P1
KV2∈IntA2+V,
A2+V⊂A2
V⊗R
V/P1Ai♯♯
V/P1
BirV=AutV=Z/2Z={id,τ},
τ∈AutV
Fsing
Ft=π−1(t)t∈P1
V/P1
V/P1
V/P1
K2
i
V/Q
V
V/P1
m=1
1
P
m=2
V/P1
P2
V4⊂P4
V/P1
K2
AutP1
P1
K2
K2
K2
P
1
K2
π:V→P1
Fπ(Y)=P1
degV=degF
PicV=ZKV⊕ZF,
degY=(Y·F·(−KV)dimY−1),
−1Y⊂π(t)
degY=(Y·(−KV)dimY).
V
V
Y⊂V
V/P1
Y⊂π−1(t)=Ft
Y
o∈Ft
multo
degV
;
V
o∈Ft
Y
multo
tF
Y⊂Ft
Fttx∈F⊂Ftoϕ(x)=oY
t→Ftϕ:F
degV
,
multxY
degV
;
o∈Y
Y
multo
degV
.
dimV≥4
V
2
A2V=ZKV⊕ZHF,
HF=(−KV·F)
A2F=Z(HF·HF)F
2
A2+V⊂ARV
F=Ft⊂V
2∼2A2RV=AV⊗R=R
{λ∆|λ∈R+,∆
}.
V/P1
K2
2
KV∈IntA2+V.
a≥1
b≥1
K2
2∆(a,b)=aKV−bHF
A2+V
N≥1
HF∈A2+V
2
KV∈IntA2+V
∆(N,1)∈
K2
V/P1
V/P1
F∈F
reg
V
E
Q⊂X
aQ∈Z+
aWπ−Q1(∈t)
Z+
π
P
1
V/P1
V/P1
|−KFσF:F→G⊂P
πM+2P1
∗O(−KV|)P
Q
P1
P(π∗O(−KV))
ME=
+1i=0
OP1(ai)
a0=0≤a1≤...≤ai≤ai+1≤...≤aM+1.
πX=P(E)
Proj
X:X→P1LX
XsQ∈H0X,LX⊗π∗
XOP1(aQ),
πQ:Q→P1
⊗mmπX|QP
W⊂X
Q/P1
sW∈H
0
X,L⊗X
⊗
π∗
XOP1(2aW)
,WQ=W∩Q
2l
Q
t∈P1
Gt
G
σ:V→Q
π−1WQ
(t)
Ft
F
P1
PicV=ZKV⊕ZF
OP1(k)k∈Z
E
π∗O(−KV)
LX|Q
LX∈PicXQ
LXLQ=
PicQ=ZLQ⊕ZG.
LV=σ∗LQ
KV=−LV+(a1+...+aM−2+aQ+aM)F.
HF=(−KV·F)
2
A2V=ZKV⊕ZHF,
HF
A1F
V
2
(KV·LM−1)=2m(4−a1−...−aM+1−aQ−aW)+2aQ.
(HF·LM−1)=2m
2
LM−1)≤0KV∈IntA2+V
|LV|
2
A2+V⊂AV⊗R
2
(KV·
σ:F→G⊂P
F∈F
F
F
m·2l
P(1,1,...,1,l),
M+2
˜(x0,...,xM+1)=0,f
u2=g˜(x0,...,xM+1),
x∗
o∈F
W∩P
u
G⊂P=P(1,...,1)g˜
˜lf
o=(0,0,...,0,1).
M+2
o
AM+2
zi=xi/x0,i=1,...,M+1,
y=u/xl0
z∗
(0,...,0)F
(z∗,y)
f=q1+...+qM=0,
y2=g=w0+...+w2l,
qiwjp=σ(o)∈Gp∈W
p
z∗
W
i
j
w0=1
w0=0
F
z∗
a≥1
√
p=σ(o)
f=qa+...+qm=0,
y2=g=1+w1+...+w2l,
2ii!
=(−1)i−1
(2i−3)!
g]i=1+
iΦi(w∗),
g(i)=g−[
√
j=1
(z∗,y)
q1,...,qm,gl+1,...,g2l−1
Op,P
a=1
p∈G
2l≥m+1
M−1
q2,...,qm,gl+1,...,g2l−1,
2l≤m
q2,...,qm−1,gl+1,...,g2l
PM=P(TpP)
M
q2=...=qm−1=gl+1=...=g2l=0
Z∗
PM
deg(P∩Z∗)<λm!(2l−1)!
m,l=
(l+1)!
(l−2)
m=3Z∗
λm,l
w0=y(0)=1
y−[
√(l−1)!
,
o∈F
multoC∗≥m!
(2l)!
P⊂PM
o∈F
F
Z∗
L∋oσ:L→σ(L)
C∗
σ(L)⊂P
Z∗=P(ToC∗).
P⊂P
{q2=...=qm=gl+1=...=g2l=0}∩σ−1(P)
λm,lC∗
−1
λm,lσ−1(P)
−1
F
f=q1+...+qm=0,y2=g=w1+...+w2l.
o∈F
q1,...,qm
Op,P
q2
{q1=w1=0}
o∈Fq1
w1
w1=0}
W∩Go∈F
σF:F→G
W∩G
p=σp
(o)q1=0
WG
w1=λq1,
λ∈C
q1=zM+1
w¯2=w2|{zM+1=0}
(z∗,y)
{q1=σF
WG=
G
→GϕG:G
p
EG∼=PM−1
z1,...,zM
EG
WE={w¯2=0}.
qi
EG
qM+1=0
q¯i
EG∼=PM−1
(z1:...:zM)
p=σ(o)∈WG
q¯2=...=q¯m=0
Z2·...·m
(m−1)
q¯2=0
WE
F∈F
F∈Freg
Fsm
o∈F
F∈Fsing
p=σ(o)∈WG
F∈F
codimF\\Freg
sing(Fsingsing)≥1
codimF(Fsing\\Fregsing)≥2.
F∈F
F
o∈F
F
V/P1
multo
degV
,
o∈F=Ft
Y⊂F
T=σ−1(TpG∩G)
p=σ(o)
T⊂F
degT=degV
multo
degV
Y=T
YT
Y∩T
FY
T
Z
multo
degV
.
Y⊂V
o∈F
multo
degV
.
π(Y)=P1
Y=FY◦F)
F
Z=(o∈F
◦F)
F
multZ=(Yo
8
deg
Z>
deg
σ(Z)>
4
multoT=2
Z=(Y◦T)
o∈F
p∈G
p∈G
q2,...,qm
degG≤dimG+1
→Fϕ=ϕF,o:F
→GϕG,p:GEG⊂G
G
oϕG=
p=σ(o)E=EF⊂F
ϕ∗(|kHF−(k+1)E|)
F
(ϕG)∗(|kHG−(k+1)EG|)
G
Λk=ΛFk
Λk
k
ΛGk
|kHF|
G
k⊂|kHF−(k+1)E|,Λ
σ∗ΛGk⊂Λk,
p∈WG
σ:F→G
p∈WG
→GF
p∈WG
ΛEk
ΛEk=Λk|E
GΛEk=Λk|EG,
(BsΛk◦E)=BsΛEk
z1,...,zM+1
p
p∈G
G
f=qa+qa+1+...+qm=0,
a=1
ΛG
k⊃
ksk−ifiq
i=a
f,i=a+...+qi,
k≥a
sj
z∗
fi|G=(−qi+1−...−qm)|G.
p∈WG
Λk⊃σ∗ΛGk
Λk
σ
p∈WG
Wt=W∩Pt⊂P
g(z∗)=1+w1+...+w2l=0,
wi(z∗)
i
√
g]j=1+
jΦi(w∗(z∗)).
i=1
Λk⊃
kmin{sk−ifi+k,2l−1}
s∗k−i
(y−[√i=ai=l
j
Λk
s∗k−i
z∗
k−i
k≤l−1
z∗
√
(y−[
2
wi+Ai(w1,...,wi−1).p=σ(o)∈WG
p
Wt
g(z∗)=w1+...+w2l=0,
q1w1
F
{w1|G=0}
p=σ(o)
k
sk−ifi+sk−1w1.Λk⊃
i=1
WG
ΛGk
Λk⊃σ∗ΛGk
o∈F
[a,b]⊂R
Copyright © 2019- dfix.cn 版权所有 湘ICP备2024080961号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务