ContentslistsavailableatScienceDirect
ElectrochimicaActa
journalhomepage:www.elsevier.com/locate/electacta
Influenceofsulphate-reducingbacteriaonenvironmentalparametersandmarinecorrosionbehaviorofQ235steelinaerobicconditions
YiWana,b,DunZhanga,∗,HuaiqunLiua,b,YongjuanLia,b,BaorongHoua
ab
KeyLaboratoryofCorrosionScience,ShandongProvince,InstituteofOceanology,ChineseAcademyofSciences,7NanhaiRoad,Qingdao266071,ChinaGraduateSchooloftheChineseAcademyofSciences,19(Jia)YuquanRoad,Beijing100039,China
articleinfoabstract
Thegrowthcycleofsulphate-reducingbacteria(SRB),Desulfovibriocaledoniensis,andtheeffectofSRBontheenvironmentalparametersandcorrosionbehaviorofQ235steelduringagrowthcycleinaero-bic(air-andO2-saturatedculturesolutions)andanaerobic(N2−saturatedculturesolutions)conditionswereinvestigated.OxygendissolvedintheculturesolutionsinducedslowgrowthandfastdecayofSRB.ThegrowthprocessofSRBunderanaerobicandaerobicconditionsinfluencedsulphideanionconcentra-tion(Cs2−),pH,andconductivity(Ä).ThevaluesofCs2−andÄunderaerobicconditionswerelowerthanthoseunderanaerobicconditions,andthepHvaluesincreasedfromO2-toair-toN2-saturatedculturesolutions.Aerobicconditionsinducedtheopencircuitpotential(EOC)toshiftinthepositivedirectionafterthestationaryphaseofSRBgrowth.Thechargetransferresistance(Rct)increasedquicklyduringtheexponentialgrowthphase,almostmaintainedstabilityduringthestationaryphase,anddecreasedafterthestationaryphaseinallthreeconditions,andtheimpedancemagnitudedecreasedfromO2-toair-toN2-saturatedculturesolutions.ThebiofilmsinducedbySRBwereobservedbyscanningelectronmicroscopy(SEM)underaerobicandanaerobicconditions,andenergydispersivespectroscopy(EDS)wasperformedinabioticandSRB-containingsystemstodistinguishthecorrosionproducts.ThereasonsfortheeffectsofSRBontheenvironmentalparametersandcorrosionbehaviorofcarbonsteelarediscussed.
Crown Copyright © 2009 Published by Elsevier Ltd. All rights reserved.
Articlehistory:
Received23July2009
Receivedinrevisedform4October2009Accepted5October2009
Available online 13 October 2009Keywords:
Sulphate-reducingbacteriaAerobicconditionMarinecorrosionQ235carbonsteel
Environmentalparameters
1.Introduction
Sulphate-reducingbacteria(SRB)areubiquitousinthemarineenvironment,wheretheyusesulphateasaterminalelectronaccep-torfordegradationoforganisms,resultingintheproductionofsulphide[1].TherelevantactivitiesofSRBinducetherock-ribbedproblembecauseoneofmetabolicproducts,sulphide,ishighlycorrosive,toxic,andreactive.Inaccordancewiththis,SRBcausecorrosionofsteel,whichhasledtoseriousenvironmentalproblemsandenormouseconomiclosses[2].
SRBgenerallyarerecognizedasanaerobicmicroorganisms,butitwasrecentlyreportedthattheycanbearoxygenconcentrationsofupto1.5mMusingseveraldefensestrategies[3].SRBpos-sessvariousself-protectionenzymesthatfacilitatesurvivalduringperiodsofoxygenexposure.SomeSRBcangeneratetherelevantsuperoxidedismutaseandcatalaseenzymesnecessaryforscaveng-ingthetoxicanddeleteriousreduceddioxgenspecieshydrogenperoxideandsuperoxide[4–8].AnotherimportantpointforthesurvivalofSRBintheoxicsystemsisthatcytochromebdoxi-daseandcytochromecoxidasearetheterminalmembraneoxygenreductasescapableofconsumingoxygen[9–11].Inaddition,somespeciesofSRBinthemarineenvironmentcoexistwiththeaerobicnativemicrobialcommunity[12,13].
Sincethe1960s,considerableeffortshavebeenmadetoinvesti-gatethemechanismsofmicrobiallyinfluencedcorrosion(MIC)bySRB.SeveralmechanismsofMICofmetalmaterialsunderanaerobicconditionarewidelyaccepted,suchasthecathodicdepolariza-tiontheory[14],thelocalcorrosionmechanism[15],andcorrosionbehaviorofmetabolicproducts[16,17].Moreover,inourprevi-ousstudywereportedtheeffectofthegrowthprocessofSRBonthecorrosionbehaviorofcarbonsteelinanaerobicconditions[18].Currently,theinfluenceofbiofilmsontheMICofcarbonsteelinartificialseawaterconditionshasgainedincreasingattentionamongresearchers[13,19–21].TheelectrochemicalreactionsthatoccurduringmetalcorrosioninthepresenceofaSRBbiofilmareasfollows[14]:Theanodicreaction:
∗Correspondingauthor.Tel.:+865328260;fax:+865328260.E-mailaddress:zhangdun@ms.qdio.ac.cn(D.Zhang).
Fe→Fe2++2e−
(1)
0013-4686/$–seefrontmatter.Crown Copyright © 2009 Published by Elsevier Ltd. All rights reserved.doi:10.1016/j.electacta.2009.10.009
Y.Wanetal./ElectrochimicaActa55 (2010) 1528–15341529
Thecathodicreactions:2H2O+2e−→2Had+2OH−(2)SO42−+8Had→S2−+4H2O
(3)
Reactionsforthecorrosionproduct:Fe2++S2−→FeS
(4)3Fe2++6OH−→3Fe(OH)2
(5)SRBconsumetheatomichydrogenaccumulatedatthecathodeandusesulphateastheelectronacceptorandreduceittothesul-phide.Finally,theproductionofsulphidefromSRBmetabolismandferrousionfromanodicdissolutionleadtotheformationofthecorrosionproductsFeSandFe(OH)2.
ToexplorethegrowthofSRBandtheeffectofSRBontheenvi-ronmentalparametersandcorrosionbehaviorsofcarbonsteelinagrowthcycleunderaerobicconditions,wemeasuredthesulphideanionconcentration(Cs2−),pH,andconductivity(Ä)oftheresearchsystem.Wealsousedscanningelectronmicroscopy(SEM),energydispersivespectroscopy(EDS),theopencircuitpotential(Eoc),andelectrochemicalimpedancespectroscopy(EIS)toinvestigatetheeffectsofSRBoncarbonsteel.2.Experiments
2.1.Materialsandreagents
Q235steel(ASTMA284GradeD)withamasspercentofelementsof0.18C,0.22Si,0.60Mn,0.02S,and0.016Pwascutintocylinders(5mmdiameterand5mmheight)foruseasworkingelectrodes.Thecylinderswereembeddedinamoldofnon-conductingepoxyresin.Electricalconnectionwasviaacopperwiresolderedontothetipofthesample.
Aseriesofchemicals,includingmagnesiumsulphate(Shang-haiMeixingChemicalCo.,Ltd.),ammoniumchloride(ShanghaiYunlingChemicalPlants),sodiumsulphate(SinopharmChemi-calReagentCo.,Ltd.),calciumchloride(TianjinBASFAuxiliaryChemicalsCo.,Ltd.),dipotassiumhydrogenphosphate(TianjinGuangchengChemicalReagentCo.,Ltd.),sodiumhydroxide(Tian-jinRgentChemicalsCo.,Ltd.),sodiumlactate(TianjinFuchenChemicalReagentFactory),andyeastextract(BeijingAoboxingBiotechCo.,Ltd.),wereusedtopreparethemodifiedPostgate’sculturemedium.Ultra-highpuritynitrogenandoxygen(>99.999%,QingdaoHeliGasCo.,China)wereusedforthepreparationoftheN2-andO2-saturatedculturesolutions,respectively.2.2.ThecultureofSRB
TheseedbacteriawereisolatedfrommarinesludgecollectedfromtheBohaiSeaofChina.ThepurifiedseawaterusedinthisworkwascollectedfromHuiquanBayinQingdao,China.
ThemodifiedPostgate’sculturesolutioncontained2.0gmag-nesiumsulphate,0.5gdipotassiumhydrogenphosphate,1.0gammoniumchloride,0.5gsodiumsulphate,0.1gcalciumchlo-ride,1.0gyeastextract,and2.0mlsodiumlactatein1lseawater.ThepHvaluewasadjustedto7.0usingtheappropriateamountofsodiumhydroxidebeforethesolutionwasautoclavedat121◦Cfor20min.Aftercooling,theSRBculturewasincubatedinsterilizedglassbottlesaeratedusingN2,air,andO2gasesfor1hat30◦Cinatemperatureincubator.2.3.SEMandEDSanalysis
SEMandEDSanalysiswereconductedatthesurfaceofthecarbonsteelafter11daysofexposuretoartificialseawatersup-
plementedwithnutrients,underbothbioticandabioticconditions.ForthecarbonsteelsoakinginSRB-containingmedium,SRB-coatedcarbonsteelhadtobefixedin5%glutaraldehydefor3handthenwashedwithPBSandMili-Qwater.Thesamplewasthenimmersedinagradientseriesofethanol(50%,75%,and99%)solutionsfordehydration.TheseexperimentswereperformedusingaJeolJSM5900LVscanelectronmicroscope(Tokyo,Japan)atanaccelerationof25kV.
2.4.MeasurementsofthenumberofSRBandofenvironmentalparameters
TheexperimentswereperformedtoillustratethegrowthcurveofSRBandtodeterminethechangesinenvironmentalparameters(e.g.,Cs2−,pH,andÄvalues)thatoccurredduringtheSRBgrowthprocessinN2-,air-,andO2-saturatedculturesolutions.A5mlsam-pleofSRBseedswasfirsttransferredintoa250mlsterilizedbottlecontaining200mlofculturesolution.TheculturesolutionsweresubsequentlyaeratedwithN2,air,orO2for1heachdaytoensurethattheculturesystemwaskeptsaturated.Followingtheaeration,thebottlesweresealedimmediatelywitholefinandincubatedinaconstanttemperatureincubatorat30◦C.Meanwhile,thenum-berofactiveSRB(NSRB)intheN2-,air-,andO2-saturatedculturesolutionswasestimatedusingthemostprobablenumber(MPN)methodaccordingtotheAmericanSocietyofTestingMaterials(ASTM)standardD4412-84.
TheCs2−valuesweredetectedusingasulphide-selectiveelec-trode(ShanghaiKangyiInstrumentCo.,Ltd.)accordingtotheASTMstandardD4658-03.ThevaluesofpHandÄinthethreesystemsweremeasuredusinganOrion5starmeterpurchasedfromThermoFisherCompany.
2.5.Electrochemicalexperiments
TheEocandEISexperimentswereconductedinacellwiththreeelectrodesusingaCHI760C(CHInstruments,Inc.)controlsystemintheN2-,air-,andO2-saturatedculturesolutionsduringtheSRBgrowthprocess.Theelectrodesusedwereasfollows:aQ235steel(5mmdiameter)workingelectrode;aPtwirecounterelectrode;andasilver/silverchloride(Ag/AgCl,3MKCl)referenceelectrode(CHInstruments,Inc.).TheresultsofEISwereanalyzedbyfittingthedatausingZsimpwinsoftware.
Beforetheexperiments,theQ235steelelectrodewaspolishedwith3000#and5000#siliconcarbidepaperand1mand0.05maluminapowder.TheelectrodethenwasultrasonicallycleanedinMili-Qwaterfor10min.Allelectrochemicalexperimentswereperformedat25±2◦C.3.Resultsanddiscussion3.1.ThegrowthcurvesofSRB
Fig.1showsthegrowthcurvesofSRBinN2-,air-,andO2-saturatedculturesolutions.ThegrowthcurvesofSRBinallthreeconditionsdisplayedatypicalthree-stagegrowthcycle,withanexponentialgrowthphase,astationaryphase,andadeathphase.Comparedtotheanaerobiccondition(N2-saturated,curvea),SRBintheaerobicconditions(curvesbandc)exhibitedaslowgrowthrateandafastdecayrateduringthegrowthcycle.Theexperimen-talresultsagreewiththeenumerationofSRBinanO2-saturatedconditionreportedbyKrekeleretal.[22].
TheseresultsillustratethetoxicityofoxygentoSRB.TheeffectofoxygenusuallyisrelatedtothesensitivityofseveralproteinsinSRB,suchashydrogenases[23],aldehydedehydrogenase[24],andNAD-dependentalcoholdehydrogenase[25].SRBuseseveralstrategies
1530Y.Wanetal./ElectrochimicaActa55 (2010) 1528–1534
Fig.1.ThegrowthcycleofSRBinN2-saturated(a),air-saturated(b),andO2-saturated(c)culturesolutions.
todealwithexposuretooxygen,thesestrategiesaccordingtoCyp-ionka’sreport[26]canbedividedintobehavioralstrategiesandmolecularmechanisms.Theformerincludesaggregateformationandaerotaxis,bywhichSRBareabletoprotectthemselvesfromfulloxygenexposurebyformingco-culturesoraggregates;thelatterincludesmechanismssuchasoxygenreductionandreactiveoxy-genspeciesdetoxification,whichallowSRBtoscavengeoxygenmoleculesandpreventthemselvesfromexperiencingdetrimentaleffects.
3.2.SEMandEDSanalysis
Fig.2showsthemicrographsoftheSRBbiofilmsthatdevel-opedonQ235steelthatwasimmersedinSRBmediuminN2-,air-,andO2-saturatedculturesolutionsduringagrowthcycle.ThebiofilmthatformedintheN2-saturatedculturesolutioniscom-pactandrelativelyporous,withanet-likestructure(Fig.2A).Incontrast,thebiofilmsthatformedunderaerobicconditionsexhibitahomogeneousandloosestructure(Fig.2BandC)becausethepro-liferationandmetabolicactivitiesofSRBunderaerobicconditionswereinhibited,resultinginchangesinthethicknessanddensityofbiofilm.
Fig.3AandBshowtheresultsoftheSEMandEDSanalysisofthelayerthatformedoncarbonsteelmaintainedinSRB-free(abiotic)mediuminanair-saturatedculturesolutionfor12days.SEManalysisrevealedthepresenceofsomefloccules(ferricoxide)withaheterogeneousdistributionattachedtothecarbonsteel.Thepresenceofsulphur-basedcompoundswasnegligibleintheabioticsystem(Fig.3B).
SEMandEDSanalysisalsoillustratedthemorphologicalandchemicalcompositionofthelayerthatformedoncarbonsteelexposedtoSRB-containingmediuminanair-saturatedculturesolutionfor12days.IntheSEMimage(Fig.3C),ahighconcentrationofcellsisvisible,alongwiththeinitialformationofpolysaccha-ridesthathaveadefinedstructureandasmoothsurfaceandareinteractingwiththemicroorganisms.Inaddition,alayerofthecorrosionproduct(ironsulphide),withvisiblesphericalgranules,wasgenerated.EDSanalysis(Fig.3D)furtherindicatedthattheregionwascomposedofahighamountofphosphates,carbohy-drates,andsulphide-basedcompoundsderivedfrombacterialcellsaswellaspolysaccharidesandcorrosionproducts(ironsulphide).Theseresultsprovidedapriorinformationthatwereusedtocreateathreetimeconstantelectrochemicalmodel.3.3.Variationsoftheenvironmentparameters
Fig.4illustratesthevariationofCs2−valueswithSRBgrowthinN2-,air-,andO2-saturatedculturesolutions.TheCs2−valuesinthe
N2-saturatedculturesolutionwerehigherthanthoseintheO2-andair-saturatedculturesolutionsduringthegrowthcycle.Moreover,theshapeofthecurvesfortheCs2−variationwasanalogoustotheshapeoftheSRBgrowthcurves.TheseresultsdemonstratethattheCs2−valuesareinfluencedbytheactivityofSRBviavariationintheSRBmetabolicproduct.
Fig.5showsthechangesthatoccurredinpHvaluesinN2-,air-,andO2-saturatedculturesolutionsduringSRBgrowth.pHvaluedecreasedabruptlyintheN2-saturatedculturesolutionwithbac-terialgrowthandthenremainedconstantatabout6.1.AlthoughthevariationsinpHfortheotherconditionsalsoexhibitedasimilarpattern,thepHvaluesinair-andO2-saturatedculturesolutionsremainedatabout6.3and6.5,respectively,andwerehigherthanthatintheN2-saturatedcondition.ThediscrepancyinpHvaluesbetweenanaerobicandaerobicconditionsmaybeduetothedifferenceintheaccumulationoforganicacidsbasedonthedifferentnumberofactiveSRBunderthethreedifferentconditions.
ThevaluesofÄduringaSRBgrowthcycleforthethreecul-tureconditionsareshowninFig.6.Inallthreecases,theÄvalueincreasedwithincreaseintheconcentrationofSRBduringtheexponentialgrowthphase,decreasedwiththedecreaseofSRBinthedeathphase,andaresteadyavaluethathigherthantheoriginoftheSRBgrowth.ThispatternoccurredbecauseduringthegrowthcycletheSRBpopulationconsumesyeastandsodiumlaurateandproducescopiousinorganicions.
Fig.2.SEMimagesofanSRBbiofilmobtainedinamediuminN2-saturated(A),air-saturated(B),andO2-saturated(C)culturesolutionsduringagrowthcycle.
Y.Wanetal./ElectrochimicaActa55 (2010) 1528–15341531
Fig.3.SEMimagesofcarbonsteelexposedtoanabiotic(A)andSRB-containing(C)systeminanair-saturatedcondition.Energydispersivespectroscopy(EDS)analy-siscorrespondingtotheSEMregionundertheabiotic(B)andSRB-containing(D)system.
Fig.4.Thechangesinthesulphideanionconcentration(Cs2−)thatoccurredinN2-saturated(a),air-saturated(b),andO2-saturated(c)culturesolutionsduringSRBgrowth.Fig.5.ThechangesinpHvaluesthatoccurredinN2-saturated(a),air-saturated(b),andO2-saturated(c)culturesolutionsduringSRBgrowth.
Fig.6.Thevariationsinconductivity(Ä)thatoccurredinN2-saturated(a),air-saturated(b),andO2-saturated(c)culturesolutionsduringSRBgrowth.
3.4.CorrosionbehaviorofQ235steel
3.4.1.Opencircuitpotential(EOC)
Fig.7showstheEOCobtainedforQ235steelversusimmersiontimeinN2-,air-,andO2-saturatedculturesolutionsbothwithandwithoutSRBduringagrowthcycle.Intheabioticenvironment,theEOCvaluesexhibitedaminornegativeshiftandquicklyreachedastationarystateinallthreecultureconditions.Incontrast,inallthreecultureconditionswithSRB,theEOCvaluesshiftedrapidlyinthenegativedirectionfromthefirsttothesixthday.Afterthat,theEOCmaintainedaconstantvalueofc.a.−0.65VintheN2-saturatedculturesolution.Intheair-saturatedsolution,theEOCremainataminimumvalueofabout−0.Vfromthesixthtothe10thday,
Fig.7.TheEOCvaluesobtainedfromQ235steelinN2-saturated(a0,a1),air-saturated(b0,b1),andO2-saturated(c0,c1)culturesolutionswithout(a0,b0,c0)andwith(a1,b1,c1)SRBfor12days.
1532Y.Wanetal./ElectrochimicaActa55 (2010) 1528–1534
thenbouncedbackto−0.60Vfromthe10thtothe14thday.IntheO2-saturatedculturesolution,theEOCshiftedquicklyinthepositivedirectionandalmoststabilizedatc.a.−0.58Vfromthesixthtothe14thday.
Theshifttowardsamorenegativepotentialwithin6daysofexposureinthethreeaeratedculturesolutionswassimilartothetrendinEOCvariationspreviouslyreportedforsteelmaterialinSRBculture[27,28].TheinitialdropinpotentialcanbeattributedtothedecreaseinpHvalues(Fig.4)thatwascausedbythegenerationoforganicacidgeneratedbytheactiveSRB.
ThepatternsofvariationinEOCvaluesafterthesixthday(thestationaryphaseofSRBgrowth)differedamongthethreecondi-tions.IntheN2-saturatedculturesolution,theSRBbiofilmonthesurfaceofQ235steelprovidedasteadymicroenvironmentthatwasnotinfluencedbyexternalenvironmentalfactors;thusstableEOCvalueswererecorded.However,inthetwoaerobicconditions,theEOCshiftedinapositivedirectionbyc.a.0.04V(air-saturated)and0.05V(O2-saturated).TheresultsareparalleltothosereportedbyWashizuetal.[29].TheyalsoobservedthatEOCvaluesshiftedinapositivedirectionbyc.a.0.05Vat31◦C,andtheyreportedthattheenrichmentofH2O2inthebiofilmproducedbySRBisanessentialfactoroftheennoblementofEOCforsteelinseawater.Inaddition,thecatalyticeffectofSRBenzymesoncathodicreactionkineticsmayalsoinducetheennoblementofEOC[30,31].
3.4.2.Electrochemicalimpedancespectroscopy
Fig.8AshowsNyquistplotsobtainedforQ235steelintheair-saturatedculturesolutionwithoutSRB;itillustratesthatthemagnitudeofimpedancedecreasedwithtime.Comparedtotheimpedancemagnitudesobtainedintheair-saturatedculturesolu-tionwithSRB(Fig.8B),theimpedancemagnitudeinair-saturatedculturesolutionwithoutSRBwasfarlower.Thisresultindicatesthatferricoxidesserveasstrongcathodestoacceleratetheoxida-tionofiron[32].
Fig.8BshowsNyquistplotsobtainedforQ235steelintheair-saturatedculturesolutionduringaSRBgrowthcycle.Themag-nitudeofimpedancevariedwiththeSRBgrowthprocess.Clearly,theimpedancerepresentedbythediameterofthesemicircleincreasedduringtheexponentialgrowthphase,almostmaintainedstabilityduringthestationaryphase,anddecreasedafterthesta-tionaryphase.Theincreaseofimpedanceduringtheexponentialgrowthphasederivedfromtheincreasingthicknessofthebiofilmandthelayerofcorrosionproducts(suchasferroussulphidepro-ducedfromSRBandferricoxideunderaerobicconditionsthatgeneratesahigherchargetransferresistanceandinhibitsthecor-rosionoftheQ235steelatshorttimes[18]).Thestableimpedance
duringthestationaryphasemayhavebeencausedbythestableSRBbiofilmonthesurfaceofthesteelandthemicroenvironment.Afterthestationaryphase,thedecreaseinimpedancewasinducedbychangesinthemicroenvironmentandthebiofilmandbythecor-rosionofQ235steelthatresultedfromthedecayofSRBandtheSRBmetabolism.Additionally,themagnitudeofthecorrosioncurrentshowedareversetrendcomparedtothevariationinimpedanceduringthegrowthcycle.Thisoccurredbecausethematurebiofilmandthecorrosionproductlayerintheexponentialphasehinderedthechargetransferprocess;thatis,itdecreasedthecorrosioncur-rentandincreasedthemagnitudeofimpedance.ThevariationofimpedancespectrashowninFig.8BisverysimilartothatobtainedforstainlesssteelAISI304inanaturalseawaterhopperinsterilemediawithSRB[33].
3.4.3.Equivalentcircuitandchargetransferresistance
FortheSRB-freemedium,Fig.9AshowsatwotimeconstantmodelcontainingapassivefilmandadoublelayertofittheEISdatafortheabioticenvironment.TheEISdatafortheSRB-containingmediumcanbeinterpretedintermsofequivalentcircuitofthethreetimeconstantmodelshowninFig.9Bbecausethesystemcontainsacorrosionproductfilm,abiofilm,andadoublelayer(Fig.3).ThethreetimeconstantmodelforcarbonsteelorstainlesssteelforthecorrosioninfluencedbySRBwaspreviouslypresentedbyPérezetal.[20]andShengetal.[34].Oncethecarbonsteelwassoakedintheculturesolution,thebiofilmwouldquicklyform.Asimmersiontimecontinued,thecorrosionproductfilmwouldbecomematureontheelectrode.Finally,thedoublelayerwouldformasrelativeionsfromtheseawaterculturediffusedontothebiofilmsurface.Intheequivalentcircuit,theQbfasaconstantphaseelement(CPE)isemployedduetodonotbehaveideallyforbioflimcapacitorintheEISspectrum.TheappearanceoftheCPEcanbeexplainedbydispersioneffectsthatarecausedbysurfacerough-nessorbiofilmmalformationonthesamplesurface[35].Moreover,ithasbeenreportedthatsomeindissolublematter,suchasCaCO3andMgCO3,alsoaffectthedielectricpropertiesofthebiofilmcapac-itor[36,37].Thechargetransferresistance,Rct,isaparameterusedtocharacterizethecorrosionrate:Rct=Rct(1)−Rct(2)
(6)
whereRctisthechargetransferresistance,Rct(1)isthechargetrans-ferresistanceintheSRBculture,andRct(2)isthechargetransferresistancewithoutSRB.
Fig.10showsthetime-dependentchangeintheRctcalculatedfromNyquistplots.ThechangeinRctvaluesagreeswiththechangeinNSRBshowninFig.1forallthreeconditions.ThevaluesofRct
Fig.8.NyquistplotsobtainedforQ235steelintheair-saturatedculturesolutionwithout(A)andwithSRB(B).
Y.Wanetal./ElectrochimicaActa55 (2010) 1528–15341533
Fig.9.EquivalentcircuitmodelsproposedtofitexperimentalimpedancediagramsforN2-,air-,andO2-saturatedculturesolutionswithout(A)andwith(B)SRB.Rs:solutionresistantce;Cdl:capacitanceofdoublelayer;Rct(1):chargetransferresistancewithoutSRB;Rct(2):chargetransferresistancewithSRB;Qcp:capacitanceofcorrosionproductlayer;Rcp:resistanceofcorrosionproductlayer;Qbf:capacitanceofbiofilm;Rbf:resistanceofbiofilm.
EOCvaluesunderaerobicconditionsshiftedinthepositivedirec-tion.
Theimpedanceincreasedduringtheexponentialgrowthphase,almostmaintainedstabilityduringthestationaryphase,anddecreasedafterthestationaryphaseinallthreeculturecondi-tions.TheimpedancemagnitudedecreasedfromO2-toair-toN2-saturatedculturesolutions.Acknowledgements
ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(GrantNo.40876041),theNationalKeyTech-nologyR&DProgramofChina(GrantNo.2007BAB27B01),ScienceandTechnologyBasicResearchProgramofQingdao(GrantNo.09-1-3-16-jch)andtheChineseAcademyofSciences(GrantNo.KZCXZ-YW-210).References
[1][2][3][4][5][6][7][8][9][10]
G.Muyzer,A.J.M.Stams,Nat.Rev.Microbiol.6(2008)441.E.S.Pankhurst,J.Appl.Bacteriol.31(1968)179.
P.Sigalevich,Y.Cohen,Appl.Environ.Microbiol.66(2000)5019.
K.U.Kjeldsen,C.Joulian,K.Ingvorsen,Envrion.Sci.Technol.38(2004)2038.A.J.Pierik,R.B.G.Wolbert,G.L.Portier,M.F.J.M.Verhagen,W.R.Hagen,Eur.J.Biochem.212(1993)237.
A.Dolla,M.Fournier,Z.Dermoun,J.Biotechnol.126(2006)87.E.C.Hatchikian,Y.A.Henry,Biochimie59(1977)153.
E.D.Coulter,D.M.KurtzJr.,Arch.Biochem.Biophys.394(2001)76.
H.Santos,P.Fareleira,A.V.Xavier,L.Chen,M.Y.Liu,J.Legall,Biochem.Biophys.Res.Commun.195(1993)551.
J.F.Heidelberg,R.Seshadri,S.A.Haveman,C.L.Hemme,I.T.Paulsen,J.F.Kolonay,J.A.Eisen,N.Ward,B.Methe,L.M.Brinkac,S.C.Daugherty,R.T.Deboy,R.J.Dod-son,A.S.Durkin,R.Madupu,W.C.Nelson,S.A.Sullivan,D.Fouts,D.H.Haft,J.Selengut,J.D.Peterson,T.M.Davidsen,N.Zafar,L.Zhou,D.Radune,G.Dimitrov,M.Hance,K.Tran,H.Khouri,J.Gill,T.R.Utterback,T.V.Feldblyum,J.D.Wall,G.Voordouw,C.M.Fraser,Nat.Biotechol.22(2004)5.M.Santana,Anaerobe14(2008)145.
K.Bade,W.Manz,U.Szewzyk,FEMSMicrobiol.Ecol.32(2000)215.
P.Sigalevich,E.Meshorer,Y.Helman,Y.Cohen,Appl.Environ.Microbiol.66(2000)5005.
V.W.Kuehr,V.Vlugt,Water8(1934)147.R.L.Starkey,Proced.Monthly22(1958)12.W.P.Iverson,Science151(1966)986.
R.A.King,J.D.A.Miller,J.S.Smith,Br.Corros.J.8(1973)137.
F.Kuang,J.Wang,L.Yan,D.Zhang,Electrochim.Acta52(2007)6084.H.Castaneda,X.D.Benetton,Corros.Sci.50(2008)1169.
E.J.Pérez,R.Cabrera-Sierra,I.González,F.Ramírez-Vives,Corros.Sci.49(2007)3580.
J.Duan,S.Wu,G.Huang,M.Du,B.Hou,Electrochim.Acta(2008)22.
D.Krekeler,P.Sigalevich,A.Teske,H.Cypionka,Y.Cohen,Arch.Microbiol.167(1997)369.
Fig.10.ThevariationinRctvaluesthatoccurredinN2-saturated(a),air-saturated(b),andO2-saturated(c)culturesolutionsduringSRBgrowth.
intheanaerobicconditionwerehigherthanthoseunderaerobicconditionsbecauseunderaerobicconditionsacompactandintactSRBbiofilmcannotform;thisisbecauseinaerobicconditionsthehighconcentrationofoxygencannotbecompletelyscavengedbytheactivityofSRB,whichthusinhibitsthegrowthofthemicrobes.Inaddition,thecorrosionproductlayer,ironsulphide,alsoprotectsthecarbonsteelsurfacefromcorrosionandanincreaseinRct[18].However,themetabolicactivitiesofSRBinhibitedunderaerobicconditionsrestraintheformationofironsulphide.4.Conclusions
ThepresentresultssuggestthatSRBpossesssomeabilitytotol-erateexposuretooxygen.TheSRBgrowthcurvesshowatypicalgrowthcyclethatcontainsthreestages(exponentialgrowth,asta-tionaryphase,andadeathphase)intheN2-,air-,andO2-saturatedculturesolutions.OxygendissolvedintheculturesolutionsinducedslowgrowthandfastdecayofSRB.
ThemetabolicactivitiesofSRBintheanaerobicandaerobiccon-ditionsinfluencedtheenvironmentparametersCs2−,pH,andÄ.ThevaluesofCs2−andÄunderaerobicconditionswerelowerthanthoseunderanaerobiccondition,andthepHvaluesincreasedfromO2-toair-toN2-saturatedculturesolutions.
Inallthreecultureconditions,theEOCvaluesshiftedrapidlyinthenegativedirectionduringtheexponentialphaseandwerestableduringthestationaryphase.Afterthestationaryphase,the
[11][12][13][14][15][16][17][18][19][20][21][22]
1534Y.Wanetal./ElectrochimicaActa55 (2010) 1528–1534
[30][31][32][33][34][35][36][37]
R.Johnsen,E.Bardal,Corrosion86(1986)227.V.Scotto,M.E.Lai,Corros.Sci.40(1998)1007.
B.Park,B.A.Dempsey,Environ.Sci.Technol.39(2005)94.
J.J.SantanaRodríguez,F.J.SantanaHernández,J.E.GonzálezGonzález,Corros.Sci.48(2006)1265.
X.Sheng,Y.-P.Ting,S.O.Pehkonen,Corros.Sci.49(2007)2159.
C.Barchiche,C.Deslouis,O.Gil,P.Refait,B.Tribollet,Electrochim.Acta49(2004)2833.
L.Bousselmi,C.Fiaud,B.Tribollet,E.Triki,Electrochim.Acta44(1999)4357.J.E.G.González,F.J.H.Santana,J.C.Mirza-rosca,Corros.Sci.40(1998)2141.
[23]R.Cammack,V.M.Fernandez,E.C.Hatchikian,MethodsEnzymol.243(1994)
43.
[24]G.Zellner,A.Jargon,Arch.Microbiol.168(1997)480.
[25]C.M.Hensgens,J.Vonck,J.VanBeeumen,E.F.vanBruggen,T.A.Hansen,J.Bac-teriol.175(1993)2859.
[26]H.Cypionka,Annu.Rev.Microbiol.(2000)827.
[27]Kh.M.Ismail,A.Jayaraman,T.K.Wood,J.C.Earthman,Electrochim.Acta44
(1999)4685.
[28]B.L.Little,J.S.Lee,R.I.Ray,Electrochim.Acta(2008)2.
[29]N.Washizu,Y.Katada,T.Kodama,Corros.Sci.46(2004)1291.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- dfix.cn 版权所有 湘ICP备2024080961号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务