实验指导书
《一》流体力学综合实验台是多用途实验装置,用此实验台可进行下列实验: A、雷诺实验 B、沿程阻力实验 C、局部阻力实验
D、能量方程(伯努利方程)实验
E、文丘里流量计和孔板流量计系数的测定实验 F、毕托管测流速和流量的方法 《二》实验装置(如下图所示)
压差板沿程实验管局部实验管文丘里实验管伯努利实验管颜色罐伯努利压差板雷诺实验管孔板实验管毕托管恒压水箱计量水箱层流测针实验桌回水管供水箱、水泵A、雷诺实验
一、实验目的
1、观察层流、紊流的流态及其转换特征。
2、测定临界雷诺数Reck,掌握圆管流态判别准则。
3、学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实用意义。
二、实验原理
1、实际流体的流动会呈现出两种不同的型态:层流、紊流(图1)它们的区别在于:流动过
哈尔滨东光教学实验设备有限公司
程中流体层之间是否发生掺混现象,在紊流流动中存在随机变化的脉动量,而在层流流动中则没有。
层流状态开始颤动紊流状态图1
2、圆管中恒定流动的流态转化取决于雷诺数Re = Vd / ,d是圆管直径,V是断面平均流速,是流体的动力粘滞系数。
3、实际流体的流动之所以会呈现出两种不同的型态是扰动因素与粘性稳定作用之间对比和
抗衡的结果。针对圆管中定常流动的情况,容易理解:减小d,减小V,加大三种途
径都是有利于流动稳定的。综合起来看,小雷诺数流动趋于稳定,而大雷诺数流动
稳定差,容易发生紊流现象。
4、圆管中定常流动的流态发生转化时对应的雷诺数称为临界雷诺数,又分为上临界雷诺数和
下临界雷诺数。上临界雷诺数表示超过此雷诺数的流动力必为紊流,它很不稳定,跨越一个较大的取值范围。有实际意义的是下临界雷诺数,表示低于此雷诺数的流动必为层流,有确定的数值,圆管定常流动的下临界雷诺数取为Recr=2300。
5、对相同流量下圆管层流和紊流流动的断面流速分布作一比较,可以看出层流流速分布呈旋
转抛物面,而紊流速度分布则比较均匀呈现对数或指数分布,靠近壁面流速梯度比层流时大,(图2)。
层流流速分布紊流流速分布图2圆管内径向分布示意图
四、实验步骤
1、测记本实验的有关常数。 2、观察两种流态。
水箱充水至溢流水位,经稳定后,微微开启调节阀,并注入水颜色于实验管内,使颜色水流成一直线。通过颜色水质点的运动观察管内水流的层流流态,然后逐步开大调节阀,由颜色水线的变化来观察层流转变到紊流的水力现象,待管中出现完全紊流后,再逐步关小调
哈尔滨东光教学实验设备有限公司
节阀,观察由紊流转变为层流的水力现象。 3、测定下临界雷诺数。
(1)将调节阀打开,使管中呈完全紊流,再逐步关小调节阀使流量减小,当流量调节到使颜色水在全管刚好呈现出一稳定直线时,即为下临界状态。 (2)待管中出现临界状态时,用体积法测定流量。
(3)根据所测流量计算下临界雷诺数,并与公认值(2320)比较,偏离过大,需重测。 (4)重新打开调节阀,使其形成完全紊流。按上述步骤重复测量不少于三次; 【注意】a、每调节阀门一次,均需等待稳定几分钟;
b、关小阀门过程中,只许关小,不许开关。
4、测定上临界雷诺数。
逐渐开启调节阀,使管中水流由层流过渡到紊流,颜色水线刚开始散开时,即为上临界状态,测定计算上临界雷诺数1-2次。
五、实验数据及整整
1、记录、计算有关常数:
实验管径 d = 14 ㎜ 水温t= ℃
运动粘度0.017751+0.00337t+0.000221t22cm /s
2、整理、记录计算表 实验颜色水水体积次数 线形态 V(m³) 时间T (s) 流量Q(cm³/s) 流速V(cm/s) 雷诺数Re 阀门开度增(↑)或减(↓) - 实测下临界雷诺数(平均值)Recr= 【注】颜色水线形态指:稳定直线,稳定略弯曲,直线摆动,直线抖动,断续,完全散开等。
六、分析与思考
1、流态判据为何采用无量纲参数。而不采用临界流速?
2、为何认为上临界雷诺数无实际意义,而采用下临界雷诺数作为层流与紊流的判据?实测下临界雷诺数为多少?
3、分析实验误差的原因。
B、沿程阻力系数测定
哈尔滨东光教学实验设备有限公司
一、实验目的
1、学会测定管道沿程水头损失系数λ的方法;
2、掌握圆管层流和紊流的沿程损失随平均流速变化的规律,绘制曲线;
3、掌握管道沿程阻力损失系数的测量方法和气—水压差计及电测压差计测量压差的方法。 4、将实测得到的结果与莫迪图作对比分析。
二、实验原理
1、对于通过直径不变的圆管的恒定水流,沿程水头损失为
Z1+P1-( )Z1+P2=hf=( )PgPg△h
△h其值为上下游量测断面的压差计读数。沿程水头损失也常表达为
LV2hf=d·2g=LVd·2g2
其中:λ为沿程水头损失系数;L为上下游量测断面之间的管段长度;d为管道直;V为断面平均流速。若在实验中测得△h和断面平均流速,则可直接得到沿程水头损失系数。 2、不同流动形态的沿程水头损失与断面平均流速的关系是不同的。层流流动中的沿程水头损失与断面平均流速的1次方成正比。紊流流动中的沿程水头损失与断面平均流速的1.75~2.0次方成正比。见图1、图2。
lghfn=1.75~2.0层流流速分布n=1过渡层流区紊流lgV图1阻力随速度变化图图2圆管内径向速度分布示意图紊流流速分布
3、沿程水头损失系数λ是相对粗糙度△/d与雷诺数Re的函数,△为管壁的粗糙度,Re=Vd/(其中为水的运动粘滞系数)。 (1) 对于圆管层流流动
哈尔滨东光教学实验设备有限公司
λ=64/Re
(2) 对于水力滑管紊流流动可取
0.31645=Re<10( )1/4Re(3) 对于水力粗糙管紊流流动
可见在层流和紊流光滑管区,沿程水头损失系数λ只取决于雷诺数。
=
沿程水头损失系数λ完全由粗糙度决定,与雷诺数无关,此时沿程水头损失与断面平均流速的平方成正比,所以紊流粗糙管区通常也叫做“阻力平方区”。
(4)对于在紊流光滑区和紊流粗糙管区之间存在过渡区,沿程水头损失系数λ与雷诺数和粗糙度都有关。
[ ]2△d+1.742lg( )2三、实验步骤
1、对照装置图和说明,搞清各组成部件的名称、作用及其工作原理;检查蓄水箱水位是否够高。否则予以补水并关闭阀门;记录有关实验常数:工作管内径d和实验管长L。
2、接通电源,启动水泵。打开供水阀。 3、调通量测系统:
(1)启动水泵排除管道中的气体。
(2)关闭出水阀,排除其中的气体。随后,关闭进水阀,开出水阀,使水压计的液面降至标尺零附近。再次开启进水阀并立即关闭出水阀,稍候片刻检查水位是否齐平,如不平则需重调。
(3)气-水压差计水位齐平。
(4)实验装置通水排气后,即可进行实验测量。在进水阀全开的前提下,逐次开大出水阀,每次调节流量时,均需稳定2-3分钟,流量愈小,稳定时间愈长;测流量时间不小于8-10秒;测流量的同时,需测记压差计读数;
(5)结束实验前,关闭出水阀,检查水压计是否指示为零,若均为零,则关闭进水阀,切断电源。否则,表明压力计已进气,需重做实验。
五、实验数据及整理
1、有关常数
d = 14 ㎜ L=1000 ㎜ 水温= ℃
2、记录及计算
哈尔滨东光教学实验设备有限公司
3、绘图分析
绘制LgV—lghf曲线,并确定指数关系值n的大小。在坐标纸上以LgV为横坐标,以lghf为纵坐标,点绘所测的LgV—lghf关系曲线,根据具体情况连成一段或几段直线。求坐标上直线的斜率
lghf2-lghf1n=lgV2-lgV1流区n=2.0,紊流过渡区1.75 六、分析与思考 1、为什么压差计的水柱差就是沿程水头损失?如果实验管道安装得不水平,是否影响实验结果? 2、本次实验结果与莫迪图吻合与否?分析原因。 3、实验中的误差主要由哪些环节产生? 表1记录及计算 常数次序 K=π6d5/8Lcn5/s2流量 流速 粘 度 雷诺数 差压计 沿程损失 沿程损失体积 时间 ㎝³ s qv V 水温 Re<2320 λ=64/ Re ㎝³/s ㎝/s ℃ υ ㎝²/s Re ㎝ hf ㎝ 系数 λ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 哈尔滨东光教学实验设备有限公司 C、局部阻力系数的测定 一、实验目的 1、学会利用三点法量测突扩圆管局部阻力损失系数的方法。 2、学会利用四点法量测突缩管路局部阻力损失系数的方法。 3、加深对局部阻力损失的感性认识及对局部阻力损失机理的理解。 二、实验原理 1、有压管道恒定流遇到管道边界局部突变的情况时,流动会分离形成剪切层, 剪切层流动不稳定,引起流动结构的重新调整,并产生旋涡,造成不可逆的能量耗散。与沿程因摩擦造成的分布损失不同,这部分损失可以看成是集中在管道边界的突变处,单位质量流体的能量损失称为局部水头损失,参见图1。 2、局部水头损失系数是局部水头损失与速度水头的比例系数,即 =hj有 V2g21 当上下游断面平均流速不同时,应明确它对应的是那个速度水头。例如对于突扩圆管就 1=hjV12g和2=hjV22g 之分。其他情况的局部水头损失系数在查表或使用经验公式确定时也应该注意这一点。通常情况下对应下游的速度水头。 3、局部水头损失的机理复杂,除了突扩圆管的情况以外,一般难于用解析方法确定,而要通过实测来得到各种局部水头损失系数。 对于突扩圆管,在不考虑突扩段沿程阻力损失的前提下,可推导出局部阻力损失因数的表达式 A121=( )1-A2,2A22=( )-1A1 对于突缩圆管,局部阻力损失因数的经验公式: =( )1-2A1三、实验步骤 1、做好实验前的各项准备工作,记录与实验有关的常数。 2、往恒压水箱中充水,排除实验管道中的滞留气体。待水箱溢流后,检查泄水阀全关 哈尔滨东光教学实验设备有限公司 时,各测压管液面是否齐平,若不平,则需排气调平。 3、打开泄水阀至最大开度,等流量稳定后,测记测压管读数,同时用体积法测量流量。 4、调整泄水阀不同开度,重复上述过程5次,分别测记测压管读数及流量。 5、实验完成后关闭泄水阀,检查测压管液面是否齐平,如平齐,关闭电源实验结束,否则,需重做。 四、实验数据及整理 d1= 14 ㎜ d2= 26 ㎜ d3= 14 ㎜ 水温= ℃ 流 量 ㎝³/s 测 压 管 读 数 ㎝ 次序 体积 时间 流量 实验数据整理表 阻力 序 流量 后断面流速V 总阻力 h ㎝/s 形式 号 ㎝³/s ㎝ 突 然 扩 大 突 然 缩 小 沿程阻力hλ ㎝ 局部阻力hζ ㎝ 阻力因素 阻力因素 ζ实 ζ计 五、分析与思考 1、结合实验成果,分析比较突扩与突缩在相应条件下下的局部损失大小。 2、结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部阻力损失的主要因素是哪些?怎样减小局部阻力损失? 3、将实验测得到的ζ值与理论公式计算值(突扩)与经验公式值(突缩)相比较,并对结果作出分析。 哈尔滨东光教学实验设备有限公司 D、伯努利方程仪实验 一、实验目的 1、验证流体恒定总流的能量方程; 2、通过对流体力学诸多水力现象的实验分析研究,进一步掌握有压管流体动力学的能量转换特性; 3、掌握流速、流量、压强等要素的实验量测技能。 二、实验原理 在实验管路中沿管内水流方向取n个过水断面。可以列出进口断面(1)至另一断面(i)的能量方程式(I=2,3……,n) 取1=2=……n=1,选好基准面,从已设置的各断面的测压管中读出Z+(P/g)值,测出通过管路的流量,即可计算出断面平均流速V及V²/2g,从而即可得到各断面测压管水头和总水头 P1PiViViιιZ1+g+g=Z+g+g+hw22三、实验步骤 1、熟悉实验设备,分清哪些管是静压管,哪些是毕托管测压管,以及两者功能的区别。 2、供水使水箱充满水,待水箱溢流,检查调节阀关闭后所有全压管水面是否齐平。如不平则需查明故障原因(例如连通管受阻、漏气或夹气泡等)并加以排除,直至调平。 3、打开调节阀,观察思考 (1)测压水头线和总水头线的变化趋势; (2)位置水头,压强水头之间的相互关系; (3)流量增加或减少时测管水头如何变化? 4、调节阀开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量。 5、改变流量2次,重复上述测量。 四、实验数据及整理 1、记录有关常数 d1= 14 ㎜ d2= 26 ㎜ 根据以上公式计算某一工况各测点处的轴心速度和平均流速填入表格,可验证出连续性方程。对于不可压缩流体稳定的流动,当流量一定时,管径粗的地方流速小,细的地方流速大。 序号 1 2 3 4 项目 点速度Vp(m/s) 平均速度V(m/s) 管内径(㎜) 哈尔滨东光教学实验设备有限公司 (3)观察和计算流体、流径,能量方程实验管对能量损失的情况:在能量方程实验管上布置四组测压管,每组能测出全压和静压,全开阀门,观察总压沿着水流方向的下降情况,说明流体的总势能沿着流体的流动方向是减少的,改变给水阀门的开度,同时计量不同阀门开度下的流量及相应的四组测压管液柱高度,进行记录和计算。 能量方程实验管工况点实验数据记录: 液柱高 序号 全压 一 二 能量方程管 中心高 ㎜ 能量方程管 内径㎜ d1= 14 ㎜ d1= 26 ㎜ 静水 头㎜ 1 静压 全压 2 静压 全压 3 静压 全压 4 静压 流量 m³/S 位置 水头 ㎜ 五、分析与思考 1、测压管水头线和总水头线的变化趋势有何不同?为什么? 2、流量增加,测压管水头线有何变化?为什么? 哈尔滨东光教学实验设备有限公司 E、文丘里流量计和孔板流量计系数的测定实验 一、实验目的 1、掌握文丘里流量计的工作原理和修正系数的测量方法; 2、掌握压差计的使用方法和体积法测流量的实验技能; 3、掌握能量方程和连续性方程的使用原则; 4、学会用孔板流量计测量流量。 二、实验原理 1、文丘里流量计是一种常用的管道流量的测量仪,见图1,属压差式流量计。它由“收缩段”、“喉部”、和“扩散段”三部分组成,安装在需要测定流量的管路上。在收缩段进口断面1-1和喉部断面2-2上设测压孔,并接上比压计,通过测量两个断面的测管水头差△h。就可计算管道的理论qv,再经修正得到实际流量qvs。 12d1d221Q扩散段喉管收缩段图1 2、理论流量:不考虑水头损失,速度水头的增加等于测管水头的减小(即比压计液面高差△h)通过测得的△h,建立两断在平均流速V1和V2之间的一个关系: P1P22V21V1△h=h1-h2=( )-( )Z1+gZ2+g=g-g如果我们假设动能修正系数1=2=1,则 2VV1P1P22Z1+g-( )Z2+g=g-g( )222 另一方面,由恒定总流连续方程有 A1V1=A2V2,即所以 2V1d22=( )V2d12 2V2V1V2d24-g=g[ ]1-( )gd1 于是 哈尔滨东光教学实验设备有限公司 Vd241-( )△h=[ ]gd1解得 22 1V2=d241-( )d1最终得到理论流量为 21222g△h πv=V2A2=4dd2g△h=C△h44d1-d2 2122式中 3、际流量:用量筒测量水的实际流量qvs。 4、流量因数: =(1)流量计流过实际流体时,两断面测管水头差中包括了粘性造成的水头损失,这导致计算出的理论流量偏大。 (2)对于某确定的流量计,流量因数还取决于流动的雷诺数:Re=V2d2/,但当雷诺数较大(流速较高)时,流量因数基本不变。 5、孔板流量计的原理 流体流过孔板时,孔板前后产生压差,其差值随流量而变,两者之间有确定的关系,因此可通过测量压差来测量流量。结构原理图如下: vA△h 式中:μ — 流量系数 △h — 压差计读数(㎜) A — 空口截面积(㎜²) μ为流量因素,不同孔板流量计μ值不同;△h为差。 bbbC=π4dd2g44d1-d2 vsv<1 m3/sb 哈尔滨东光教学实验设备有限公司 12d11d2Q2图1孔板流量及原理示意图 三、实验步骤 1、查阅用压差计量测压和用体积法测量流量的原理和方法; 2、对照实物了解仪器设备的使用方法和操作步骤; 3、启动水泵,给水箱充水,并保持溢流状态,使水位稳定; 4、检查下游阀门关闭时,压差计各个测压管水面是否处于同一平面上。如不平,则需排气调平; 5、录断面管径等数据; 6、先从大流量开始实验。开启下游阀门,使压差计上出现最大的值,待水流稳定后,再进行量测,并将数据记录入表中; 7、依次减小流量,待稳定后,重复上述步骤8次以上,并按序记录数据; 8、检查数据记录表是否有缺漏?是否有某组数据明显不合理?若有此情况,进行补测; 9、整理实验结果,得出流量计在各种流量下的△h,qv,qvs和。 10、对实验结果进行分析讨论。 四、实验数据及整理 有关常数 文丘里管: d2 = 8 ㎜ d1 = 14 ㎜ 水温t= ℃ 孔板流量计:d2 = 8 ㎜ d1 = 14 ㎜ 测压管读数(㎝) 序 号 h1 h2 h3 h4 1 2 3 4 5 6 7 8 水量 (㎝³) 测量时间 (s) 9 哈尔滨东光教学实验设备有限公司 (㎝³/s) (㎝³/S) 1 2 3 4 5 6 7 8 9 五、分析与思考 1、文丘里流量计的实际流量与理论流量为什么会有差别,这种差别是由那些因素造成的? 2、文丘里流量计的流量因数是否与雷诺数有关?通常给出一个固定的流量因数应怎么理解? 3、为什么在实验中要反复强调保持水流稳定的重要性? F、毕托管测流速及流量的方法 一、实验目的 1、了解毕托管的构造,掌握毕托管测量流速的原理和方法; 2、测定管嘴淹没出流流速计算管嘴淹没出流流速因素。 二、实验原理 可用毕托管测量点流速 V=c2gh=k△hK=c2g式中:V — 毕托管测点处流速 c — 毕托管的修正因数 (1) △h — 毕托管全压水头与静压水头差。 管嘴出流时断面平均流速为: V=Cv2g△H(2) 式中:V — 测点断面的平均流速 Cv — 流速因数 △h — 管嘴的作用水头 b 序号 qvs △ h (h1-h2+h3-h4) (㎝) v=C△h = vs 哈尔滨东光教学实验设备有限公司 认为出流断面速度分布均匀,联立(1)、(2)式得; Cv=c三、实验步骤 △H△h/ 1、熟悉实验装置各部分名称、作用及构造。将毕托管对准管嘴,距离管嘴出口处约2-3㎝,上紧固定螺丝。 2、开启水泵。 3、待上下溢流后,用吸气球放在测压管口部抽吸,排除毕托管及各连通管中的气体,用静水匣;罩住毕托管,检查测压计液面是否齐平,液面不齐平可能是空气没有排尽,重新排气。 4、测记各有关常数,填入实验表格。 5、改变流速操作调节阀,使溢流量适中,共可获得三个不同恒定水位与相应的不同流速记录数据。改变流速后,按上述方法重复测量。 四、实验数据及整理 表1记录计算表校正系数C = ,K = ㎝⁰·⁵/s 测点流速 实下游水位差(㎝) 毕托管水头差(㎝) v=k△h 验上、次(㎝/s) 序 h1 h2 △h h3 h4 △h 测点流速系数 Cc△H △h/ 五、分析与思考 1、利用测压管测量点压强时,为什么要排气?怎么检验排净与否? 2、所测的流速因数Cv说明了什么? 3、毕托管的测速范围为0.2-2m/s,流速过小过大都不宜采用,为什么?另外,测速时要求探头对正水流方向(轴向安装偏差不大于10度),试说明其原因。 因篇幅问题不能全部显示,请点此查看更多更全内容