Design and implementation of indoor environment fire alarm system based on
Wireless Sensor Network
Author: Xiu Wen Fu, Wenfeng Li, Lin Yang
As a new network technology, wireless sensor networks (WSN) are widely used in various emergency events because of their strong local cooperative sensing and the ability to interpret data from the environment. In this paper, we propose a fire alarm system called firealarming system indoor environment (fasie), which innovatively integrates wireless fire alarm network with hand fire extinguishing rescue support system. Unlike traditional wireless sensor networks that implement fire networks, the fasie is able to fire into fire, including fire alarms, providing full range of services, firerescuing and Firefighter positioning. In order to explain Fahey better, we first give a general description of fasie and introduce the architecture of the system. Then, the hardware and system performance are introduced.
Key words: Wireless Sensor Networks (WSN), indoor environment, fire alarm system, handheld fire rescue support system
1 Introduction
With the new manufacturing and integration technology, reduce the cost, the size of the wireless sensor, we have witnessed another revolution, is conducive to the control and observation of our life and the physical world, as the network technology to do, micro sensors connected to each individual and organization deeply embedded into the
Word 资料
基于无线传感器网络的室内环境火灾报警系统的设计与实现
physical environment of information exchange network we can observe with the environment and in a loyal, previously not real-time human-computer interaction. As one of the most influential aspects of fire protection applications, public safety activities have also achieved significant benefits in the emergence of wireless sensor networks and their further development in [2]. In this paper, we propose a wireless fire alarm system fire alarm system for indoor environment (fasie) the main contribution is the introduction of the wireless network and handheld fire alarm fire rescue fire alarm and rescue support system to provide comprehensive technical support.
The rest of this article is organized as follows. Section 51.2 describes the state-of-the-art of existing fire alarm systems. In the 51.3 section, fasie is introduced from the point of view of system composition and function. The 51.4 section describes the fasie layered architecture. The 51.5 section introduces the key hardware of fasie. The 51.6 part analyzes the performance of fasie. Finally, conclusions and future work are presented in sect. 51.7.
2 related work
Because wireless sensor networks have great potential in the field of fire protection, many fire protection systems have been developed based on WSN. But in most cases, the only purpose of the network is to obtain environmental data, which are collected and displayed in a base station, stored in a database, or sent to a remote location [3,4]. Here, several representative proposals differ from the traditional paradigm as follows:
(1) CFFDRS [5] is a forest fire that has been extensively implemented in the United
第 2 页 共 22 页
.
States and new zealand. The main component of the system is the fire weather index (FWD), and this index is the key meteorological element through the fire, such as temperature, evaluation of relative humidity, wind speed and precipitation. The acquisition of CFFDRS information relies on wireless sensor nodes deployed in thousands of forested areas. The CFFDRS monitoring network collects various information (e.g., temperature, wind speed, and humidity). The base station of the monitoring network provides environmental information directly to the remote server.
(2) scier [6] is a comprehensive system for the detection, monitoring and prediction of natural disasters. Scier's target applications are urban and rural areas. The unique component in scier is the local alarm control unit, used to control the wireless sensor network (WSN) and is responsible for the early detection, location and subsequent fire alarm function of the fire. Scier develops wireless sensor nodes in two different urban and rural areas: citizens, masters, public sensors, sensors. The citizens of the owners, sensors, and sensors of public ownership, sensors, and installations are different, depending on their application scenarios.
(3) Eidos [7] is a comprehensive system including alarm, fire alarm and rescue. The main component of the system is a network composed of thousands of sensor nodes, deployed in the field of unmanned aerial vehicles (UAV). Another key element of the system is the handheld device that firefighters carry. The network is responsible for monitoring the monitoring area and sending environmental information to remote servers. Handheld devices are integrated with lightweight browsers that have access to remote databases or data centers. In summary, although the system has experienced significant improvement compared with the traditional cases, most of them only focus
Word 资料
基于无线传感器网络的室内环境火灾报警系统的设计与实现
on the realization of single professional fire alarm network or fire rescue support network, resulting in inability to undertake more complex tasks. To a certain extent, they do waste a lot of resources. Therefore, the fasie aims to provide more comprehensive services for fire protection activities, including fire monitoring, fire fighting, rescue and fire personnel positioning.
3 system introduction
The fasie system consists of two component application architectures: a wireless fire alarm network and a handheld fire rescue support system. Wireless fire alarm networks are deployed by hundreds of wireless sensor nodes in buildings and other application scenarios. Since wireless sensor nodes have specialized applications in fire scenarios, each node is encapsulated in fire protection package. With WSN forest monitoring, the main applications of fasie are mainly focused on indoor environmental monitoring. Therefore, the node is equipped with two power modules (battery module and fixed power module). When the fire happens, the wireless fire alarm network can detect the fire at once and send out alarm information to the base station. In fasie, the base station is a small high-performance embedded system with two communication interfaces (such as Wi-Fi and 3G), which can be deployed easily. When the base station receives the alarm information, the alarm information is forwarded to the monitoring platform through the Wi-Fi, and corresponding evacuation and call service decisions are made according to the received information. A key element of the handheld fire rescue support system in FASIE is unique features that can distinguish this system from other existing support systems for fire protection. A handheld fire rescue system consists of two devices: a fire PDA and a wireless sensor node with a Bluetooth interface. Portable wireless sensor
第 4 页 共 22 页
.
nodes can share information with PDA via Bluetooth interface. Information (such as RSSI and LQI) is dynamically self organized. Through the indoor environment location algorithm, PDA can access the accurate location of fire fighters and notify the supervision platform through the 3G network. In addition to indoor location services, the handheld fire rescue system also includes outdoor location services and health status monitoring. With the support of the GPS chip within the PDA, the PDA is able to access the exact location and can provide great help to fire equipment and crew scheduling. Because of the integration of multiple sensors for portable wireless sensor nodes, wireless sensor nodes are able to sense the ambient environment and monitor the physical parameters of the firefighters. Through the 3G network, the monitoring center can monitor the firefighter's health and surrounding conditions. When the fire fighters are in danger, supervise the platform and organize rescue immediately. In addition, since the handheld firealarming system is a lightweight browser integration, firefighters can access remote databases through Web services.
4 Tier Architecture
In order to improve the versatility, flexibility and scalability of the system, the fasie design adopts a hierarchical architecture, followed by the open system interconnection reference model (OSI), and the [8] is divided into six layers. From top to bottom, they are application layer, forwarding layer, assembly layer, link management layer, equipment layer and sensing layer.
1.as the lowest level of the system, the perception layer is responsible for the environment awareness and information collection. In general, the sensing layer collects
Word 资料
基于无线传感器网络的室内环境火灾报警系统的设计与实现
environmental information and information passed to the device layer via data interfaces (such as SPI and PC). Depending on the device, the data relayed from the sensor layer is also different. For wireless sensor nodes, sensing layer mainly fuses smoke and temperature information. For handheld devices, the sensor layer also includes physical parameters such as ECG and blood pressure, in addition to the environmental parameters mentioned above. The selection of sensor and data interface and the configuration of sampling rate are the key technologies of sensor layer.
2. the device layer is the basis of the system, and all client oriented functions must be implemented through this layer. The responsibility for the device layer is to provide hardware support for wireless communications between devices (such as Wi-Fi, ZigBee, and Bluetooth). In general, the device layer mainly includes gateway devices, and its core technology is to realize the sharing of information. There are many kinds of devices between different types and different data interfaces.
3. link management layer plays an important role in network self organization, and is considered as the main technical bottleneck that hinders the progress of WSN research. The responsibilities of managing link layer include neighbor discovery, authentication and link estimation and self-organization. In fasie, when a new device, such as a wireless fire alarm node, is added to the network, the link management detects the device and submits the relevant information to the forwarding layer. It is worth noting that when handheld fire fighters enter the detection area, link management should also be able to capture the trajectory of fire fighters.
4.the forwarding layer is responsible for data transmission and dependence layer.
第 6 页 共 22 页
.
More specifically, if the link management layer is used to build the channel, the forwarding layer is designed to solve such problems as selecting which channel and which path the data should follow. As for fasie, the role of the broadcast layer in the forwarding system is to determine that the lower hoop should establish a message queue to the target node to achieve effective cache management.
5、 the assembly layer can be considered as a link between high-level applications that connect network applications, and its functions usually include encryption, protocol conversion, and name service. Due to the high sensitivity of WSN energy consumption, the data provided from one device to another need to be re coded to shorten the length of messages, thus ensuring the safety and energy saving of information. When the encoded message arrives at the device, the assembly layer also requires decoding the information to ensure the integrity of the information. Fasie involves several network media. Different network media require different network protocols. Therefore, the assembly layer requires protocol transformations to maintain the information flow across different types of networks.
6. Application layer as the highest level of the system, responsible for providing services to customers. Application layer performance pays close attention to the user experience, thus affecting the future application market. Extensible and flexible API is an important part of the application layer, which can help customers to diversify their functions according to their own requirements. One
5 device design
Word 资料
基于无线传感器网络的室内环境火灾报警系统的设计与实现
5.1 wireless sensor nodes
Wireless sensor node fasie, we chose the ATMEL microcontroller ATmega128 8 bit processor as a controller, Chipcon as the RF chip CC2530. To ensure the accuracy of the test results, two types of sensors (such as smoke sensors and thermometers) are used to detect fire. We choose MQ-2 resistance sensor, smoke sensor, select temperature acquisition, DS18B20 digital temperature sensor
CC2530 is a real system on chip (SOC) IEEE 802.15.4 ZigBee RF4CE application solution. It enables powerful network nodes with very low total material cost bills. CC2530 combines the leading RF transceiver with the industry standard for its excellent performance of the enhanced 8051 microcontroller, the system programmable flash memory, the 8KB RAM, and many other powerful features. CC2530 has different operating modes, making it ideal for systems requiring ultra-low power consumption. The short transition time between the operating modes ensures further low energy consumption by 91.
MQ-2 smoke sensors, resistive sensors are used to measure flammable gases in the air. The voltage required for normal operation is 5 V and the supply voltage is MQ-2. The
sensing node is supplied by the ATmega128 microcontroller board 6 V. DS18B20:DS18B20 is a high precision thermometer in air sensing temperature. Its operating temperature range is between - 55 and 125 OC and the exact range of + 0.5 oc - 10 OC to 85 oc. Power supply range 3.0~5.5 v. wireless sensor node for fasie, power supply depends on the ATmega128 microcontroller board and the power supply voltage is 5 V.
第 8 页 共 22 页
.
5.2 embedded gateway
Embedded gateway is based on the x20ii board as the core controller of S5PV210 samsung. The embedded gateway is equipped with a wireless ieee801.ll B / g interface and a fast Ethernet interface that enables customers to select different network interfaces relative to the actual network environment. In addition, the embedded gateway also provides 2 RS232 serial ports and 4 USB ports (Figure 51.4). 5.3 hand fire fighting rescue support system
As shown in Figure 51.5, hand held fire extinguishing systems consist of two parts: high performance PDA and portable fire sensor nodes. The function of PDA is to receive, display and relay data from the portable fire sensor node, and the main function of the portable sensor node centralized network receiving position data in the collection of environmental information from the scene of the fire and the deployment of wireless fire alarm. Here, we chose the fasie U880 ZTE PDA hardware platform. Since U880 is a powerful mobile communication device that supports Bluetooth and GPS positioning, it is fully qualified in the FASIE shoulder PDA task. Portable fire rescue support system consists of four modules: ATmega128 microcontroller based controller, CC2530 RF chip, Bluetooth module and sensor module. Since the design and installation of the wireless sensor node with the amtega128 controller and the CC2530 RF chip, the nodes described in the wireless sensor node are similar. 5.1. In FASIE, we select the Bluetooth module, and the Bluetooth module is supported by the CSR hc-05, which supports the AT instruction set and the master-slave mode switch. In fasie, the Bluetooth module's supply voltage is provided by the ATmega 128 controller and its data transmission is dependent on the TTL serial port.
Word 资料
基于无线传感器网络的室内环境火灾报警系统的设计与实现
6 experimental evaluation
To further illustrate the performance of fasie, in this section, we select the performance parameters of a single sensor node, such as the battery lifetime and the average delay of the whole network. In a lifetime test of a wireless sensor node, a fully changed 9 V battery is placed at the sensing node, and the sampling frequency is configured to be 2 per second. Throughout the overall performance of the network, the test site is located at a 2000 km \"train station\" where the fasie system has been deployed and functioning properly. For the installation of fire alarm nodes according to the national mandatory regulations, the monitoring area of single sensor nodes is limited to within 20 meters-. In addition, we use the CSMA MAC protocol to incorporate the
presence of interference in the backup and further avoid the occurrence of packet loss.
6.1 battery life
The performance of wireless sensor nodes improves in our deployment. At the start, the battery is fully charged, and when the voltage is 5 V, the voltage of the battery is less than 4.1 V, and the operation of the node becomes unstable. Therefore, here, we can consider the time of battery voltage from 5 to 4.1 V as the node lifetime. As shown in the diagram, the voltage value of the battery decreases smoothly over time, and it will take more than 2 months to reach the node failure threshold, which is far beyond what we call target 6 weeks. It is worth noting that in the initial experiment, the node can only last for a maximum of one week. The reason for this is that we are only setting the idle mode in the controller processor idle, but not the power consumption of the RF chip. In fact, according to the parameters mentioned in L L, more than 70% of the energy is
第 10 页 共 22 页
.
consumed in the data transfer phase. 6.2 Time Delay
Here, we employ a new parameter to measure the time delay that occurs during data transmission. Assuming that a network node is created, a predefined packet is provided with a time stamp through the cardiac network and then sent to the base station. Once the base station receives a packet, a confirmation packet will be created and sent back immediately. When the base station node obtains the confirmation packet, 2 hours to confirm receipt of data packets, the node will be recorded and time delay in Tr, diyaxin, can be easily accessed, then the average delay of the entire network can be easily obtained by the same procedure is repeated in. From the graph, when the number of nodes in the network is < 30), the impact of network expansion on the overall delay is not obvious, and the network size increased to 100, the growth trend has become more active. For this reason, when the network size is less than 20, mainly through the sensor nodes and the base station and the average delay time of single hop communication is 9 milliseconds, but with the expansion of network scale, the average hop between base station and sensor node number increased rapidly, leading to a sharp increase in time delay time and tide average delay
7 conclusions and future work
In this paper, a comprehensive fire alarm system, fasie, based on the network structure of wireless sensor networks, has been designed, and hardware design. Several experiments have been implemented to evaluate the system performance. By integrating a wireless fire alarm network with a handheld fire rescue support system, the fasie can go to fire operations, including fire alarms, providing full service, fire fighting,
Word 资料
基于无线传感器网络的室内环境火灾报警系统的设计与实现
rescue and Firefighter locations. As one of the distinctive features of the implementation of fire fighting activities from the highly dynamic network of firefighters or failure, fault tolerant routing protocol is one of the important criteria to measure the performance of fire protection system, this will be a major focus of future work.
Reference
1. L., Mottola, L, PiCCO, GP (2010) programming the basic concepts and state of the art of wireless sensor networks. Overview of inverted index
2.Fortino, G, GuetTieri, GMP et al. O'Hare (2012) a flexible building management framework for wireless sensor and actuator network based on. Network computer applications, 35 (6): 1934-1952
3. Garcia EM, Bermudez, Carcedo R, Quiles FJ (2007) collaborative data processing
for forest fire prevention. Fourth European Conference on Wireless Sensor Networks 4. Son, EHB, she, Kim, J (2006) and the design and implementation of Korean forest fire monitoring system based on wireless sensor network. Computational science of network security
5, Kucuk, G, Kosucu, B, sub gas, baydere, S (2008) firesense: using wireless sensor network system to predict and detect forest fires. Fourth IEEE / ACM International Conference on distributed sensor systems (dcoss,'08), Santorini, Greece 6.
第 12 页 共 22 页
.
Sevas, Sekkas, O, hadjiefthymiades, Anagnostopoulos, C (2007) through fusion technology in urban and rural interface fire detection. The first International Conference on mobile ad, hoc networks and sensor systems, global and Homeland Security (2007, Pisa, Italy, mass-ghs)
7. Garcia EM, Bermudez R, Ma senna, Carcedo (2008) a simulation support system of wireless sensor network based on wildfire fighting. IEEE model international symposium, simulation analysis with wireless sensor networks (massn,'08), Sydney 8, Bachir, Dohler, M, Leung, Watteyne, KK (2010) wireless sensor network MAC essentials. IEEE Communications Survey and tutorial, Volume 12 (2), second quarter 2010
基于无线传感器网络的室内环境火灾报警系统的设计与实现
作者:秀文付,文峰丽,林洋
无线传感器网络(WSN)作为一种新兴的网络技术,具有较强的局部协同感知和从环境中解释数据的能力,在各种突发事件中得到了广泛的应用。在本文中,我们提出了一个火灾报警系统称为firealarming系统室内环境(fasie),创新性地集成了手持灭火救援支持系统的无线火灾报警网络。不同于传统的无线传感器网络实现消防网络,fasie能够到消防活动包括火灾报警提供全方位的服务,firerescuing和消防员定位。为了更好地说明费伊,首先给出了fasie总体描述和介绍了该系统的体系结构。然后,硬件和系统性能进行了介绍。
关键词:无线传感器网络(WSN)室内环境火灾报警系统手持式消防救援保障系统
1引言
Word 资料
基于无线传感器网络的室内环境火灾报警系统的设计与实现
随着新的制造和集成技术,降低成本,无线微传感器的尺寸,我们见证了另一场革命,有利于观察和我们的生活与物理世界的控制,正如网络技术所做的方式,个人和组织相互连接的微型传感器深深嵌入到物理环境的信息交换网络使我们能够观察随着环境和在一个忠诚,以前得不到实时的人机交互。消防应用作为一个最有影响力的方面,公众安全活动,也取得了显着的好处,无线传感器网络的出现和其进一步发展[2]。在本文中,我们提出了一种无线火灾报警系统火灾报警系统的室内环境(fasie)的主要贡献是引入了无线火灾报警网络和手持灭火救援支持系统提供火灾报警和救援全面的技术支持。
本文的其余部分组织如下。第51.2节介绍了现有的火灾报警系统的最先进的。51.3节从系统组成和功能的角度介绍了fasie。51.4节介绍了fasie分层体系结构。51.5节介绍有关fasie关键硬件。51.6部分分析fasie性能。最后,结论和今后的工作中提出的教派。51.7。
2相关工作
由于无线传感器网络在消防领域具有巨大的应用潜力,基于WSN开发了许多消防系统。但在大多数情况下,网络的唯一目的是在获取环境数据,这些数据收集和显示在一个基站,存储在数据库中或发送到远程位置[3,4]。在这里,有几个代表性的建议不同于传统范式如下:
(1)CFFDRS [5]是一个森林火灾已在美国和新西兰广泛实施危险等级系统。该系统的主要组成部分是火险天气指数(FWD和这个指数是通过火的关键气象要素如温度、评估相对湿度、风速和降水。的CFFDRS信息获取依赖于无线传感节点部署在森林地区的成千上万。监测网络的CFFDRS收集各种信息(例如,温度、风速和湿度)。监测网络的基站直接向远程服务器提供环境信息。
(2)scier [6]是一个综合性的系统工作的检测、监测及预测自然灾害。scier的目标应用是
第 14 页 共 22 页
.
城市和农村地区。在scier独特的组件是本地报警控制单元,用于控制无线传感器网络(WSN)并负责火灾的早期检测、定位和随后的火灾报警功能。scier开发无线传感节点两种不同城市地区和农村地区分别为:公民主人公有传感器传感器。公民的所有者传感器和公共拥有的传感器的权威,传感器和安装是不同的,根据他们的应用场景。
(3)eidos [7]是一个包括报警报警和灭火救援综合系统。该系统的主要组成部分是由成千上万的传感器节点组成的网络,部署在外地的无人机(UAV)。系统中的另一个关键要素是消防员携带的手持设备。该网络负责监视监视区域并向远程服务器发送环境信息。手持设备与能够访问远程数据库或数据中心的轻量级浏览器集成在一起。 综上所述,尽管上述系统经历了显着的改善与传统案件相比,他们中的大多数只关注单实现地区专业火灾报警网络或消防救援支持网络,导致没有能力承担更复杂的任务。在某种程度上,他们确实浪费了许多资源。因此,对fasie目的是为消防活动包括火灾监测提供更全面的服务、灭火救援和消防人员定位。
3系统介绍
fasie系统是由两组件应用架构:无线火灾报警网络和手持灭火救援支持系统。无线火灾报警网络是由数百个无线传感节点部署在建筑物和其他应用场景。由于在火灾场景中具有专门应用的无线传感节点,每个节点封装成防火包装。与WSN的森林监测,对fasie主要应用主要集中在室内环境监测。因此,节点配备两个电源模块(电池模块和固定电源模块)。火灾发生时,无线火灾报警网络能够即时检测火灾,同时向基站发出报警信息。在fasie,基站是一个小型的高性能嵌入式系统的两个通信接口(如Wi-Fi和3G),它可以部署方便。基站在接收报警信息时,通过Wi-Fi将告警信息转发到监控平台,并根据接收到的信息进行相应的疏散和呼叫服务等相关决策。手持灭火救援支持系统在FASIE的一个关键因素是独特的特征可以区分本系统从其他现有的支撑系统消防。手持式消防救援系统由两个装置组成:一个防火PDA和一个具有蓝牙接口的无线传感节点。便携式无线传感节点能够通过蓝牙接口与PDA共享信息。信息(例如RSSI和LQI)通
Word 资料
基于无线传感器网络的室内环境火灾报警系统的设计与实现
过动态自组织。通过室内环境定位算法,PDA能够访问消防队员的准确位置,并通过3G网络通知监管平台。除了室内定位服务外,手持消防救援系统的功能还包括室外定位服务和健康状态监测。PDA内的GPS芯片的支持,PDA能够访问准确的位置,可以提供巨大的帮助,消防设备和船员调度。由于集成了多个传感器的便携式无线传感节点,无线传感节点能够感知周围的环境和监测的消防队员的物理参数。通过3G网络,监控中心能够监督消防队员的健康状况及其周围情况。当消防人员面临危险时,监督平台立即组织救援活动。此外,由于手持firealarming系统是一个轻量级的浏览器集成,消防员可以通过Web服务访问远程数据库。
4层体系结构
为了提高系统的通用性、灵活性和可扩展性,对fasie设计采用分层的体系结构遵循开放系统互连参考模型(OSI)[8],分为六层。从上到下,分别是应用层、转发层、装配层、链路管理层、设备层和感测层。
1. 感知层作为系统的最低层次,负责环境感知和信息采集。在一般情况下,传感层收集环境信息和信息传递到设备层通过数据接口(如SPI和PC)。根据不同的设备,从传感层中继的数据也不同。对于无线传感器节点,传感层主要融合烟雾和温度信息。对于手持设备,除了上面提到的环境参数外,传感层还包括消防员的物理参数(如心电图和血压)。传感器和数据接口的选择和采样率的配置是传感层值得注意的关键技术。
2、设备层是系统的基础,所有面向客户端的功能必须通过这个层来实现。设备层的职责是为各种设备之间的无线通信(例如Wi-Fi、ZigBee和蓝牙)提供硬件支持。在一般情况下,设备层主要包括网关设备,其核心技术是实现信息的共享,不同类型、不同数据接口的设备之间的多个种类。
第 16 页 共 22 页
.
3、链路管理层在网络自组织中起着至关重要的作用,被普遍认为是阻碍WSN研究进展的主要技术瓶颈。管理链路层的职责主要包括邻居发现、认证和链路估计和自组织。在fasie,当一个新的设备如无线火灾报警节点加入网络,链路管理检测设备并提交相关信息的转发层。值得注意的是,当手持手持设备的消防战士进入探测区域时,链路管理也应该能够捕捉到消防队员的移动轨迹。
4、转发层是负责数据传递和依赖的层。更具体地说,如果链路管理层用于构建信道,则转发层是为了解决诸如选择哪个信道以及数据应该遵循哪个路径的问题。至于fasie,转发系统中播放层的作用是确定下箍应向目标节点建立消息队列实现有效的缓存管理。
5、装配层可以看作是连接网络应用的高层次应用的纽带,其功能通常包括加密、协议转换和名字服务。由于WSN的能源消耗的高灵敏度,提供的数据从一个设备到另一个设备需要重新编码,以缩短消息的长度,从而保证信息的安全与节能。当编码的消息到达装置,装配层还要求对信息进行解码,保证了信息的完整性。fasie涉及几个网络媒体。不同的网络媒体需要不同的网络协议。因此,装配层需要协议转换为了保持信息流在不同类型的网络。
6。应用层作为系统的最高级别负责向客户提供服务。应用层的性能密切关注用户体验,从而影响未来的应用市场。可扩展和灵活的API是应用层的重要组成部分,能够帮助客户根据自己的需求实现多样化的功能。 一
5装置的设计
5.1无线传感节点
无线传感节点fasie,我们选择了ATMEL单片机ATmega128的8位处理器作为控制器,由
Word 资料
基于无线传感器网络的室内环境火灾报警系统的设计与实现
Chipcon作为射频芯片CC2530。为了保证检测结果的准确性,两种类型的传感器(如烟雾传感器和温度计)来探测火灾的发生。我们选用MQ-2电阻式传感器,烟雾传感器,选择温度采集DS18B20数字温度传感器
CC2530是一个真正的片上系统(SOC)的IEEE 802.15.4 ZigBee RF4CE应用解决方案。它使强大的网络节点,以非常低的总材料成本法案。CC2530结合了领先的RF收发器与业界标准的优良性能的增强型8051单片机,在系统可编程闪存,8KB的RAM,和许多其他强大的功能。CC2530具有不同的运行模式,使得它非常适合超低功耗要求的系统。操作模式之间的过渡时间短,进一步确保低能耗91。
MQ-2烟雾传感器电阻式传感器是用来测量空气中的可燃气体。正常运转所需的电源电压为5 V电源电压MQ-2在传感节点是由ATmega128单片机控制板提供6 V。
DS18B20:DS18B20是在空气传感温度高精度温度计。它的工作温度范围为- 55至125业主立案法团和准确的±0.5业主立案法团的范围内- 10业主立案法团至85业主立案法团。供电范围3.0~5.5诉的无线传感节点用于fasie,电力供应依赖于ATmega128单片机控制板和电源电压值为5 V的。
5.2嵌入式网关
嵌入式网关是基于x20ii板为核心控制器的S5PV210三星。嵌入式网关是配备一个无线ieee801.ll b / g的界面和快速以太网接口,使客户能够选择不同的网络接口相对于实际的网络环
第 18 页 共 22 页
.
境。此外,嵌入式网关还提供2个RS232串行端口和4个USB端口(图51.4)。
5.3手持灭火救援支持系统
如图51.5所示,手持灭火系统由两部分组成:高性能PDA和便携式消防传感节点。PDA的功能是从便携式消防传感节点接收、显示和中继数据,而便携式传感节点的职责主要集中在收集环境信息和从火灾现场部署的无线火灾报警网络接收位置数据。在这里,我们选择在fasie U880中兴PDA硬件平台。由于U880是一个功能强大的移动通信设备,支持蓝牙和GPS定位,它完全有资格在FASIE肩PDA任务。便携式消防救援支持系统由四个模块组成:ATmega128单片机为主控制器,CC2530射频芯片,蓝牙模块和传感器模块。自从和amtega128控制器和CC2530射频芯片在便携式无线传感节点的设计安装与无线传感节中描述的节点相似。5.1。在FASIE我们选择蓝牙模块,蓝牙模块由CSR hc-05,支持AT指令集和主从模式切换。在fasie,蓝牙模块的电源电压是以ATmega 128控制器及其数据传输提供了依靠TTL串口。
6实验评价
为了进一步说明fasie的性能,在这一节中我们选择一个单一的传感节点的电池寿命和整个网络的平均时延等性能参数。在无线传感节点的寿命测试中,将一个完全改变的9 V电池放入传感节点,采样频率被配置为每秒2个。在整个网络的整体性能,试验现场位于一个2000公里的“火车站在哪里fasie系统已经部署和运行正常。针对符合国家强制性规定的火灾报警节点的安装,单个传感节点的监测区域限制在20米以内—。此外,我们使用了CSMA MAC协议,将备份中存在的干扰,并进一步避免出现的数据包丢失。
6.1电池寿命
Word 资料
基于无线传感器网络的室内环境火灾报警系统的设计与实现
无线传感节点的电池性能的提高在我们的部署。在开始时,电池是完全充电,其中电压值为5 V时,电池的电压值低于4.1 V,该节点的操作变得不稳定。因此,在这里,我们可以考虑电池电压的时间是从5到4.1 V作为节点的生存期。如图所示,电池的电压值随着时间的推移平滑地降低,它将花费超过2个月,达到节点故障阈值,这是远远超出我们所说的目标6周。值得注意的是,在最初的实验中,节点只能持续一周的最大值。这样做的原因是,我们只设置在控制器处理器的休眠模式空闲,但不涉及的RF芯片的功耗。事实上,根据L L中提到的参数,超过70%的能量被消耗在数据传输阶段。
6.2 Time Delay
在这里,我们采用了一个新的参数来衡量的时间延迟过程中发生的数据传输。假定属于网络节点创建一个预先确定的数据包带有时间戳通心络,然后被发送到基站。一旦基站接收到一个包,一个确认包将被创建并立即发送回来。当节点获得确认基站分组,时间2时确认收到的数据包,将被记录和时间延迟的节点在Tr,狄雅辛,可以很容易地访问,那么整个网络的平均时延可以通过重复相同的过程中容易获得。从图中看,当网络中节点数为< 30)时,网络扩展对整体时延的影响不明显,而网络规模增加到了100,增长趋势变得更为积极。负责这个的原因是,当网络规模在20以内,传感节点与基站主要通过单跳和平均延迟时间的沟通是9毫秒,而随着网络规模
的扩大,基站和传感节点之间的平均跳数迅速增加,导致平均延迟时间和时间延迟潮急剧增加。
7结论与未来工作
在本文中,一个全面的火灾报警系统fasie基于无线传感器网络的网络结构进行了设计,硬件设计。已经实施了几个实验,以评估系统的性能。通过整合无线火灾报警网络与手持灭火救援支持系统,fasie能够到消防活动包括火灾报警提供全方位服务,灭火救援和消防队员的位置。由于一个显著特点实施消防活动是从消防队员或失败的节点网络的高动态性,容错路由协议是衡量
第 20 页 共 22 页
.
消防系统性能的重要标准之一,这将是未来工作的一大重点。
参考文献
1. L. Mottola L,PiCCO GP(2010)编程无线传感器网络的基本概念和状态的艺术。倒排索引综述
2,Fortino G,GuetTieri,奥黑尔GMP等人(2012)一个灵活的构建管理框架基于无线传感器和执行器网络。网络计算机应用,35(6):1934-1952
3.加西亚EM,贝穆德斯,卡塞多R,Quiles FJ(2007)协同数据处理森林防火。第四欧洲无线传感器网络会议
4.Son EHB,她,Kim J(2006)和基于无线传感器网络的韩国山林火灾监控系统的设计实现。计算科学的网络安全
5.Kucuk G,Kosucu B,亚瓦斯,baydere S(2008)firesense:利用无线传感器网络系统对森林火灾的预测和检测。第四IEEE / ACM国际会议对分布式传感器系统(dcoss '08),圣托里尼岛,希腊
6.泽瓦斯、Sekkas O、hadjiefthymiades,阿纳格诺斯托普洛斯C(2007)通过融合技术在城乡接口火灾探测。第一在移动ad hoc网络和传感器系统的全局和国土安全国际研讨会(2007,比萨,意大利mass-ghs)
7.加西亚EM,赛纳马,贝穆德斯,卡塞多R(2008)模拟一个基于无线传感器网络的野火
作战支持系统。IEEE模型国际研讨会,与无线传感器网络的仿真分析(massn '08),悉尼
Word 资料
基于无线传感器网络的室内环境火灾报警系统的设计与实现
8.Bachir,Dohler M,Leung Watteyne,KK(2010)的无线传感器网络MAC要领。IEEE通信调查和教程,12卷(2),第二季度2010
第 22 页 共 22 页
因篇幅问题不能全部显示,请点此查看更多更全内容