您好,欢迎来到抵帆知识网。
搜索
您的当前位置:首页(整理)常用积分公式

(整理)常用积分公式

来源:抵帆知识网
-------------

常 用 积 分 公 式

(一)含有axb的积分(a0)

dx1lnaxbCaxba1.=

11(axb)C(axb)dxa(1)2.=(1)

x1dx(axbblnaxb)C23.axb=a

11x222(axb)2b(axb)blnaxbCdx3a24.axb=

dx1axbx(axb)blnxC5.= dx1aaxblnCx2(axb)bxb2x6.= x1bdx(lnaxb)C2(axb)2aaxb7.=

2x21b(axb)2dxa3(axb2blnaxbaxb)C8.=

dx11axblnCx(axb)2b(axb)b2x9.=

-------------

-------------

(二)含有axb的积分

2(axb)3Caxbdx=3a

10.2(3ax2b)(axb)3Cxaxbdx211.=15a

12.x22(15a2x212abx8b2)(axb)3Caxbdx3=105a

13.

x2dx(ax2b)axbCaxb=3a2

x22dx(3a2x24abx8b2)axbC3axb=15a

14.

dxxaxb15.=1lnbaxbbC(b0)axbb2axbarctanC(b0)bb

16.

x2dxaxbadxbx2bxaxb axb=

17.

dxaxb2axbbdxxaxbx= 18.

axbadxaxbdxx2xaxb x2=

22(三)含有xa的积分

-------------

-------------

dx1xarctanC22xaaa19.=

dxx2n3dx(x2a2)n2(n1)a2(x2a2)n12(n1)a2(x2a2)n120.= 1xadxlnC2221.xa=2axa

2axb(a0)的积分 (四)含有

1arctanab1lndx2ab2axb22.=axCb(b0)axbC(b0)axb

x1dxlnax2bC223.axb=2a

x2xbdxdx2224.axb=aaaxb

1x2dxx(ax2b)2blnax2bC25.=

dx1adxx2(ax2b)bxbax2b26.=

ax2bdxa1lnC32x(axb)2b222x2bx27.=

-------------

-------------

28.dxx1dx(ax2b)2=2b(ax2b)2bax2b

(五)含有ax2bxc(a0)的积分

22ax4acb2arctanb4acb2Cdx12axbb2ln4ac29.ax2bxc=b24ac2axbb24acCx30.ax2bxcdx1=2alnax2bxcbdx2aax2bxc(六)含有x2a2(a0)的积分

x31.

dxx2a2=

arshaC1=ln(xx2a2)C xx32.

d(x2a2)3=a2x2a2C

xx2a2dx33.

=x2a2C

x134.

(x2a2)3dxx2a2C=

x2x2a2dxx=2x2a2a235.

2ln(xx2a2)C

x22(x2a2)3dxx=

x2a2ln(xxa2)C36.

-------------

(b24ac)(b24ac)

-------------

37.

xxdxx2a2=dx1x2a2alnCax

38.

2x2a2C222xa=ax

39.2xa22xaln(xx2a2)Cx2a2dx2=2

40.(x2a2)3dxx3(2x25a2)x2a2a4ln(xx2a2)C8=8

1(x2a2)3Cxxadx41.=3

2242.

2x4xa2222(2xa)xaln(xx2a2)Cx2a2dx8=8

43.

x2a2a22x2a2xaalnCdxxx=

x2a2x2a222dxln(xxa)C2xx=

44.

22(a0)的积分 xa(七)含有45.

xxarchC1lnxx2a2Cax2a2=x=

dxdx(x2a2)346.

=ax2xa22C

-------------

-------------

47.

xxa22dx22xaC =48.

x(x2a2)3dx1xa22C=

49.

xxx2x2a2x2dxx2a22xalnxx2a2C2=2

xx2a250.

(xa)223dx=

lnxx2a2C

dxx2a2=dx51.

1aarccosCax

52.

2x2a2Cx2a2=a2x

53.2xa22xalnxx2a2Cx2a2dx2=2

.x342222(2x5a)xaalnxx2a2C(xa)dx8=8

22355.

22xxadx1(x2a2)3C=3

x56.24xa22222222(2xa)xalnxxaCxadx8=8

57.

a22x2a2xaaarccosCdxxx=

-------------

-------------

58.

x2a2x2a2dxlnxx2a2C2xx=

22(八)含有ax(a0)的积分

59.

dxa2x2=

arcsinxCa x60.

dx(ax)223=a2ax22C

xax22dx61.

22=axC

62.

x(a2x2)3dx1=ax22C

63.

xx2xax22dxaxarcsinCa2x222a=

x2x2(a2x2)3dxx22ax=arcsin.

xCa

dxa2x2=dx65.

1aa2x2lnCax

66.

2a2x2Ca2x2=a2x

67.2xax2222axarcsinCaxdx2a=2

-------------

-------------

68.x34x2222(5a2x)axaarcsinC(ax)dx88a=

2231(a2x2)3Cxaxdx69.=3

2270.

2x4xax222222(2xa)axarcsinCaxdx88a=

71.

aa2x222a2x2axalnCdxxx=

a2x2a2x2xdxarcsinCx2xa=

72.

2axbxc(a0)的积分 (九)含有73.

12ln2axb2aaxbxcC2aaxbxc= 2axbax2bxcaxbxcdx=4a 2dx74.4acb28a3ln2axb2aax2bxcC

75.

xax2bxcdx1ax2bxc=a b2a3ln2axb2aax2bxcC

-------------

-------------

76.

dxcbxax2=

12axbarcsinC2ab4ac

77.2axbb24ac2axb2cbxaxarcsinC2cbxaxdx324a8ab4ac=

xcbxax21b2axbcbxax2arcsinC32a2ab4ac= 78.

dx(十)含有xaxb或(xa)(bx)的积分

79.

xaxadx(xb)(ba)ln(xaxb=xbxb)C

80.

xaxaxadx(xb)(ba)arcsinCbx=bxbx dx(xa)(bx)xaCbx2arcsin81.=

(ab)

82.2xab(ba)2xa(xa)(bx)arcsinC(xa)(bx)dx44bx=

(ab)

(十一)含有三角函数的积分

sinxdx83.=cosxC cosxdx84.=sinxC tanxdxlncosxC85.=

-------------

-------------

86.cotxdx=

lnsinxC

xlntan()CsecxdxlnsecxtanxC4287.==

cscxdx88.=

2secxdxlntanxClncscxcotxC2=

=tanxC

90.

2cscxdx=cotxC

secxtanxdx91.=secxC cscxcotxdx92.=cscxC

x1sin2xC=24

93.

2sinxdxx1sin2xCcosxdx94.=24

21n1n1sinxcosxsinn2xdxsinxdxn95.=n

n1n1n1cosxsinxcosn2xdxcosxdxn96.=n

ndx1cosxn2dxn1nn297.sinx=n1sinxn1sinx

-------------

-------------

dx1sinxn2dxn1nn298.cosx=n1cosxn1cosx

1m1m1n1cosxsinxcosm2xsinnxdxcosxsinxdxmn99.=mn

mn1n1cosm1xsinn1xcosmxsinn2xdxmn=mn 11cos(ab)xcos(ab)xCsinaxcosbxdx2(ab)2(ab)100.=

11sin(ab)xsin(ab)xCsinaxsinbxdx2(ab)2(ab)101.=

11sin(ab)xsin(ab)xCcosaxcosbxdx2(ab)2(ab)102.=

2dxarctan22103.absinx=abatanxb2C22ab(a2b2)

x22bba12lnC22xdxbaatanbb2a22104.absinx=

atan(a2b2)

2ababxdxarctan(tan)Cab2105.abcosx=abab(a2b2)

x1ab2lnabbaxdxtan2106.abcosx=

tanabbaCabba(a2b2)

-------------

-------------

dx1barctan(tanx)C2222acosxbsinxaba107.= 1btanxadxlnC22222abbtanxa108.acosxbsinx=

11sinaxxcosaxCxsinaxdx2aa109.=

110.

2xsinaxdx1222xcosax2xsinax3cosaxCaa=a 11cosaxxsinaxCxcosaxdx2a111.=a

1222xsinaxxcosaxsinaxCxcosaxdx23aaa112.=

2(十二)含有反三角函数的积分(其中a0)

xxarcsindxxarcsina2x2Ca=a113.

x2a2xx2x2()arcsinaxCxarcsindx24a4a114.= x3x12xarcsin(x2a2)a2x2Cxarcsindxa9a=3115.

2xx22arccosdxxarccosaxCa=a116.

-------------

-------------

x2a2xx2x2()arccosaxCxarccosdx4a4a=2117. x3x12x222arccos(x2a)axCxarccosdxa9a=3118.

2xxaarctandxxarctanln(a2x2)Ca=a2119.

x12xa2xarctandx(ax)arctanxCa=2a2120.

x3xa2a3x22arctanxln(ax)Cxarctandxa66a=3121.

2(十三)含有指数函数的积分

1xaCadxlna122.=

x1axeCedxa123.=

ax1(ax1)eaxCxedx2124.=a

ax125.

naxxedx1naxnn1axxexedxa=a

xx1xaaC2xadxlna(lna)126.=

x-------------

-------------

1nxnn1xxaxadxxadxlnalna127.=

nx1eax(asinbxbcosbx)Cesinbxdx22128.=ab

ax1eax(bsinbxacosbx)Cecosbxdx22129.=ab

ax130.

axnesinbxdx1axn1esinbx(asinbxnbcosbx)222=abn

n(n1)b2axn22esinbxdx22abn

1eaxcosn1bx(acosbxnbsinbx)ecosbxdx222131.=abn

axnn(n1)b2ax2ecosn2bxdx22abn

(十四)含有对数函数的积分 132.

dxlnlnxC133.xlnx=

lnxdx=xlnxxC

-------------

-------------

1n11x(lnx)Cxlnxdxn1n1134.=

nn(lnx)dx135.=

x(lnx)nn(lnx)dxn1

1nm1nx(lnx)xm(lnx)n1dxx(lnx)dxmn136.=m1(十五)含有双曲函数的积分 137.shxdx=chxC

138.chxdx=shxC

139.thxdx=lnchxC

sh2140.xdxx=214sh2xC

ch2141.xdxx=214sh2xC

(十六)定积分 142.cosnxdx=sinnxdx=0

-------------

m1

-------------

143.cosmxsinnxdx=0

0,mncosmxcosnxdx,mn144.=

0,mnsinmxsinnxdx,mn145.=

0,mn,mnsinmxsinnxdxcosmxcosnxdx146.0=0=2

2020147.

In=sinxdxn=cosnxdx

n1In2In=n

n1n342Lnn253(n为大于1的正奇数),I1=1

InInn1n331Lnn2422(n为正偶数),I0=2

-------------

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- dfix.cn 版权所有 湘ICP备2024080961号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务