常 用 积 分 公 式
(一)含有axb的积分(a0)
dx1lnaxbCaxba1.=
11(axb)C(axb)dxa(1)2.=(1)
x1dx(axbblnaxb)C23.axb=a
11x222(axb)2b(axb)blnaxbCdx3a24.axb=
dx1axbx(axb)blnxC5.= dx1aaxblnCx2(axb)bxb2x6.= x1bdx(lnaxb)C2(axb)2aaxb7.=
2x21b(axb)2dxa3(axb2blnaxbaxb)C8.=
dx11axblnCx(axb)2b(axb)b2x9.=
-------------
-------------
(二)含有axb的积分
2(axb)3Caxbdx=3a
10.2(3ax2b)(axb)3Cxaxbdx211.=15a
12.x22(15a2x212abx8b2)(axb)3Caxbdx3=105a
13.
x2dx(ax2b)axbCaxb=3a2
x22dx(3a2x24abx8b2)axbC3axb=15a
14.
dxxaxb15.=1lnbaxbbC(b0)axbb2axbarctanC(b0)bb
16.
x2dxaxbadxbx2bxaxb axb=
17.
dxaxb2axbbdxxaxbx= 18.
axbadxaxbdxx2xaxb x2=
22(三)含有xa的积分
-------------
-------------
dx1xarctanC22xaaa19.=
dxx2n3dx(x2a2)n2(n1)a2(x2a2)n12(n1)a2(x2a2)n120.= 1xadxlnC2221.xa=2axa
2axb(a0)的积分 (四)含有
1arctanab1lndx2ab2axb22.=axCb(b0)axbC(b0)axb
x1dxlnax2bC223.axb=2a
x2xbdxdx2224.axb=aaaxb
1x2dxx(ax2b)2blnax2bC25.=
dx1adxx2(ax2b)bxbax2b26.=
ax2bdxa1lnC32x(axb)2b222x2bx27.=
-------------
-------------
28.dxx1dx(ax2b)2=2b(ax2b)2bax2b
(五)含有ax2bxc(a0)的积分
22ax4acb2arctanb4acb2Cdx12axbb2ln4ac29.ax2bxc=b24ac2axbb24acCx30.ax2bxcdx1=2alnax2bxcbdx2aax2bxc(六)含有x2a2(a0)的积分
x31.
dxx2a2=
arshaC1=ln(xx2a2)C xx32.
d(x2a2)3=a2x2a2C
xx2a2dx33.
=x2a2C
x134.
(x2a2)3dxx2a2C=
x2x2a2dxx=2x2a2a235.
2ln(xx2a2)C
x22(x2a2)3dxx=
x2a2ln(xxa2)C36.
-------------
(b24ac)(b24ac)
-------------
37.
xxdxx2a2=dx1x2a2alnCax
38.
2x2a2C222xa=ax
39.2xa22xaln(xx2a2)Cx2a2dx2=2
40.(x2a2)3dxx3(2x25a2)x2a2a4ln(xx2a2)C8=8
1(x2a2)3Cxxadx41.=3
2242.
2x4xa2222(2xa)xaln(xx2a2)Cx2a2dx8=8
43.
x2a2a22x2a2xaalnCdxxx=
x2a2x2a222dxln(xxa)C2xx=
44.
22(a0)的积分 xa(七)含有45.
xxarchC1lnxx2a2Cax2a2=x=
dxdx(x2a2)346.
=ax2xa22C
-------------
-------------
47.
xxa22dx22xaC =48.
x(x2a2)3dx1xa22C=
49.
xxx2x2a2x2dxx2a22xalnxx2a2C2=2
xx2a250.
(xa)223dx=
lnxx2a2C
dxx2a2=dx51.
1aarccosCax
52.
2x2a2Cx2a2=a2x
53.2xa22xalnxx2a2Cx2a2dx2=2
.x342222(2x5a)xaalnxx2a2C(xa)dx8=8
22355.
22xxadx1(x2a2)3C=3
x56.24xa22222222(2xa)xalnxxaCxadx8=8
57.
a22x2a2xaaarccosCdxxx=
-------------
-------------
58.
x2a2x2a2dxlnxx2a2C2xx=
22(八)含有ax(a0)的积分
59.
dxa2x2=
arcsinxCa x60.
dx(ax)223=a2ax22C
xax22dx61.
22=axC
62.
x(a2x2)3dx1=ax22C
63.
xx2xax22dxaxarcsinCa2x222a=
x2x2(a2x2)3dxx22ax=arcsin.
xCa
dxa2x2=dx65.
1aa2x2lnCax
66.
2a2x2Ca2x2=a2x
67.2xax2222axarcsinCaxdx2a=2
-------------
-------------
68.x34x2222(5a2x)axaarcsinC(ax)dx88a=
2231(a2x2)3Cxaxdx69.=3
2270.
2x4xax222222(2xa)axarcsinCaxdx88a=
71.
aa2x222a2x2axalnCdxxx=
a2x2a2x2xdxarcsinCx2xa=
72.
2axbxc(a0)的积分 (九)含有73.
12ln2axb2aaxbxcC2aaxbxc= 2axbax2bxcaxbxcdx=4a 2dx74.4acb28a3ln2axb2aax2bxcC
75.
xax2bxcdx1ax2bxc=a b2a3ln2axb2aax2bxcC
-------------
-------------
76.
dxcbxax2=
12axbarcsinC2ab4ac
77.2axbb24ac2axb2cbxaxarcsinC2cbxaxdx324a8ab4ac=
xcbxax21b2axbcbxax2arcsinC32a2ab4ac= 78.
dx(十)含有xaxb或(xa)(bx)的积分
79.
xaxadx(xb)(ba)ln(xaxb=xbxb)C
80.
xaxaxadx(xb)(ba)arcsinCbx=bxbx dx(xa)(bx)xaCbx2arcsin81.=
(ab)
82.2xab(ba)2xa(xa)(bx)arcsinC(xa)(bx)dx44bx=
(ab)
(十一)含有三角函数的积分
sinxdx83.=cosxC cosxdx84.=sinxC tanxdxlncosxC85.=
-------------
-------------
86.cotxdx=
lnsinxC
xlntan()CsecxdxlnsecxtanxC4287.==
cscxdx88.=
2secxdxlntanxClncscxcotxC2=
.
=tanxC
90.
2cscxdx=cotxC
secxtanxdx91.=secxC cscxcotxdx92.=cscxC
x1sin2xC=24
93.
2sinxdxx1sin2xCcosxdx94.=24
21n1n1sinxcosxsinn2xdxsinxdxn95.=n
n1n1n1cosxsinxcosn2xdxcosxdxn96.=n
ndx1cosxn2dxn1nn297.sinx=n1sinxn1sinx
-------------
-------------
dx1sinxn2dxn1nn298.cosx=n1cosxn1cosx
1m1m1n1cosxsinxcosm2xsinnxdxcosxsinxdxmn99.=mn
mn1n1cosm1xsinn1xcosmxsinn2xdxmn=mn 11cos(ab)xcos(ab)xCsinaxcosbxdx2(ab)2(ab)100.=
11sin(ab)xsin(ab)xCsinaxsinbxdx2(ab)2(ab)101.=
11sin(ab)xsin(ab)xCcosaxcosbxdx2(ab)2(ab)102.=
2dxarctan22103.absinx=abatanxb2C22ab(a2b2)
x22bba12lnC22xdxbaatanbb2a22104.absinx=
atan(a2b2)
2ababxdxarctan(tan)Cab2105.abcosx=abab(a2b2)
x1ab2lnabbaxdxtan2106.abcosx=
tanabbaCabba(a2b2)
-------------
-------------
dx1barctan(tanx)C2222acosxbsinxaba107.= 1btanxadxlnC22222abbtanxa108.acosxbsinx=
11sinaxxcosaxCxsinaxdx2aa109.=
110.
2xsinaxdx1222xcosax2xsinax3cosaxCaa=a 11cosaxxsinaxCxcosaxdx2a111.=a
1222xsinaxxcosaxsinaxCxcosaxdx23aaa112.=
2(十二)含有反三角函数的积分(其中a0)
xxarcsindxxarcsina2x2Ca=a113.
x2a2xx2x2()arcsinaxCxarcsindx24a4a114.= x3x12xarcsin(x2a2)a2x2Cxarcsindxa9a=3115.
2xx22arccosdxxarccosaxCa=a116.
-------------
-------------
x2a2xx2x2()arccosaxCxarccosdx4a4a=2117. x3x12x222arccos(x2a)axCxarccosdxa9a=3118.
2xxaarctandxxarctanln(a2x2)Ca=a2119.
x12xa2xarctandx(ax)arctanxCa=2a2120.
x3xa2a3x22arctanxln(ax)Cxarctandxa66a=3121.
2(十三)含有指数函数的积分
1xaCadxlna122.=
x1axeCedxa123.=
ax1(ax1)eaxCxedx2124.=a
ax125.
naxxedx1naxnn1axxexedxa=a
xx1xaaC2xadxlna(lna)126.=
x-------------
-------------
1nxnn1xxaxadxxadxlnalna127.=
nx1eax(asinbxbcosbx)Cesinbxdx22128.=ab
ax1eax(bsinbxacosbx)Cecosbxdx22129.=ab
ax130.
axnesinbxdx1axn1esinbx(asinbxnbcosbx)222=abn
n(n1)b2axn22esinbxdx22abn
1eaxcosn1bx(acosbxnbsinbx)ecosbxdx222131.=abn
axnn(n1)b2ax2ecosn2bxdx22abn
(十四)含有对数函数的积分 132.
dxlnlnxC133.xlnx=
lnxdx=xlnxxC
-------------
-------------
1n11x(lnx)Cxlnxdxn1n1134.=
nn(lnx)dx135.=
x(lnx)nn(lnx)dxn1
1nm1nx(lnx)xm(lnx)n1dxx(lnx)dxmn136.=m1(十五)含有双曲函数的积分 137.shxdx=chxC
138.chxdx=shxC
139.thxdx=lnchxC
sh2140.xdxx=214sh2xC
ch2141.xdxx=214sh2xC
(十六)定积分 142.cosnxdx=sinnxdx=0
-------------
m1
-------------
143.cosmxsinnxdx=0
0,mncosmxcosnxdx,mn144.=
0,mnsinmxsinnxdx,mn145.=
0,mn,mnsinmxsinnxdxcosmxcosnxdx146.0=0=2
2020147.
In=sinxdxn=cosnxdx
n1In2In=n
n1n342Lnn253(n为大于1的正奇数),I1=1
InInn1n331Lnn2422(n为正偶数),I0=2
-------------
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- dfix.cn 版权所有 湘ICP备2024080961号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务