Informa Ltd Registered in England and Wales Registered Number: 10729 Registered office: Mortimer House,37-41 Mortimer Street, London W1T 3JH, UK
International Journal of Production Research
Publication details, including instructions for authors and subscription information:http://www.tandfonline.com/loi/tprs20A decision framework for maximising leanmanufacturing performance
Varun Ramesh & Rambabu Kodali
a
a
a
Mechanical Engineering Group, Birla Institute of Technology and Science, Pilani-333031,Rajasthan, India
Version of record first published: 26 Aug 2011.
To cite this article: Varun Ramesh & Rambabu Kodali (2012): A decision framework for maximising lean manufacturingperformance, International Journal of Production Research, 50:8, 2234-2251To link to this article: http://dx.doi.org/10.1080/002073.2011.5665PLEASE SCROLL DOWN FOR ARTICLE
Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditionsThis article may be used for research, teaching, and private study purposes. Any substantial or systematicreproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form toanyone is expressly forbidden.The publisher does not give any warranty express or implied or make any representation that the contentswill be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses shouldbe independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly inconnection with or arising out of the use of this material.InternationalJournalofProductionResearchVol.50,No.8,15April2012,2234–2251
Adecisionframeworkformaximisingleanmanufacturingperformance
VarunRameshandRambabuKodali*
MechanicalEngineeringGroup,BirlaInstituteofTechnologyandScience,Pilani-333031,Rajasthan,India
(Received26May2010;finalversionreceived14February2011)
Sincethedevelopmentoftheoriginalvaluestreammapping(VSM)byTaichiOhnoatToyota,anumberofauthorshavesuggestedseveraladditionalVSMtoolstounderstandandimprovethevaluestreamthroughwastereduction.AsinglebestVSMtool,thougheffectiveindealingwithacertainwastetype,becomesredundantasotherwastestakecentrestageand/ororganisationalprioritieschange.Toovercomethis,adecisionframeworkbasedonanovelformulationoftheintegratedanalyticalhierarchyprocess(AHP)–pre-emptivegoalprogramming(PGP)hasbeenproposed.ThisframeworknotonlyguaranteesaccurateselectionofanidealVSMtool,basedonthecurrentorganisation’spriorities,butalsoaidsthedecisionmakertoarriveattheoptimumimplementationsequenceofachosensetofVSMtoolstoidentifyandreduceallwastespresentinthesystem,therebymaximisingorganisationalperformanceintheshortesttimeframe.
Keywords:leanmanufacturing;waste;VSM;decisionframework;leancompetitivepriorities;leanperfor-mancemetrics;AHP;PGP
Downloaded by [Columbia University] at 18:35 05 January 2013 1.Introduction
Theterm‘leanmanufacturing’wasfirstusedinThemachinethatchangedtheworldbyJamesWomackandDanielJones(1991)todescribethemanufacturingphilosophypioneeredbyToyota.ThephilosophyhasbeenpractisedatToyotaunderthenameofToyotaProductionSystem(TPS),whichhasitsoriginsinKichiroToyoda’s(thefounderofToyota)workwaybackin1934buthasonlyrecently(since1990)receivedglobalattention.Inanutshell,leanmanufacturingistheendlesspursuitofeliminatingwaste(Shingo19).Wasteisanythingthataddscost,butnotvalue,toaproduct(Ohno1988).Toyotacategorisesthedifferenttypesofwasteobservedarounditsplantintosevencategories,alsoknownasthe‘sevendeadlywastes’(Shingo1988).Severalauthorshavepresentedvariousalternativetypologiesfordifferenttypesofwastepresentinasystem;Dennis(2007)hasincludedthewasteofknowledgedisconnectioninadditiontothesevenwastes.LikerandMeier(2006)haveintroducedthewasteofunusedcreativity.TheKaizenInstitute(2010)proposedreprioritisationwasteasanadditionalcategory.Hinesetal.(1998)haveintroducedpowerandandenergy,humanpotential,environmentalpollution,unnecessaryoverheadsandinappropriatedesign.Inthepresentresearch,onlythesevenwastesasoriginallyproposedbyShingo(1988)havebeenconsidered.Thesearethewastescreatedby:overproduction;inventory;waiting;overprocessing;transportation;excessivehumanmotion;anddefects.
1.1Valuestreammappingasatoolagainstwaste
TheconceptofusingavisualtooltorepresenttheflowofmaterialandinformationasameanstoidentifyandeliminatewastewasoriginallyintroducedbyTaichiOhno.Originally,thismethodologywaspassedoninToyotathroughthelearningbydoingprocess–mentorstrainedmenteesbyassigningthemtoprojects–andremainedunknowntotheoutsideworldatlarge.MikeRotherandJohnShookchangedthat,intheirLearningtosee(1999).AccordingtoRotherandShook,avaluestreamisdefinedasalltheactions(bothvalueaddedandnon-valueadded)currentlyrequiredtobringaproductthroughthemainflowsessentialtoeveryproduct:theproductionflowfromrawmaterialintothearmsofthecustomerandthedesignflowfromconcepttolaunch.
AnalternativeviewtoVSMhasalsobeenfoundintheliterature.AsproposedbyHinesetal.(1998),valuestreammanagementisamorestrategicandholisticapproachtowasteidentificationandremoval.Byborrowingtechniquesfromdiversefieldssuchasengineering,logisticsandoperationsresearch,HinesandRich(1997)have
*Correspondingauthor.Email:proframbabukodali@gmail.com
ISSN0020–73print/ISSN1366–588Xonlineß2012Taylor&Francis
http://dx.doi.org/10.1080/002073.2011.5665http://www.tandfonline.com
InternationalJournalofProductionResearch2235
compiledasetofsevendetailedvaluestreammappingtools(Table1)toidentifymicro-levelwasteandsubsequentlyreduceit.However,applicationofinappropriatemappingtoolsmayresultintheadditionalwastageofresourcessuchastimeandmoney,andthereductionofemployees’confidenceintheleanphilosophy.Hence,HinesandRichhavealsoproposedadecisionheuristicforselectionofvaluestreammappingtechniquesusingtheValueStreamAnalysisTool(VALSAT)approach.Aspartoftheheuristic,HinesandRichhavedevelopedacorrelationmatrixbetweenvariouswastetypesandthesevenvaluestreammappingtools.Thecurrentpaperfurtherdevelopsthematrixtoencompassleanvaluestreammapping(currentstatemap/futurestatemap),asshowninTable2.Thispresentstheorganisationwiththeopportunitytocomparetheperformanceofvaluestreammanagementtoolswith
Table1.Thesevenvaluestreammappingtools.Mappingtool
1.Processactivitymapping
Description
Anindustrialengineeringtoolforthestudyofflowprocess,identificationofwaste,considerationofprocessrearrangement,considerationofflowrearrangement,analysisoftheoccurrenceofactivity.
Portraysinasimplediagramthecriticallead-timeconstraintsforaparticular
process.Itmayplotasimplediagramindicatingcumulativeinventoryleadtimeversusprocessleadtimeatvariousstages.Ithelpsintargetingeachofthe
individualinventoryamountsandleadtimeatdifferentstagesforimprovement.Plotsthenumberofproductvariantsateachstageofthemanufacturingprocess.Helpsindecidingwheretotargetinventoryreductionandmakingchangestotheprocessingofproducts.Providesoverviewofthecompany.
Thistoolisdesignedtoidentifyqualityproblemsintheorderfulfilmentprocessorthewidersupplychain.Themapshowstheoccurrenceofthethreetypesofdefects(productdefects,scrapdefectsandservicedefects)inthevaluestream.
Thisgraphshowsthebatchsizeoftheproductatvariousstagesoftheproductionprocess(withinacompanyorsupplychain).Itcanalsoshowtheinventoryholdingatvariousstagesintime.
Decisionpointanalysisisofparticularusefor‘T’plantsorforsupplychainsthatexhibitsimilarfeatures,althoughitmaybeusedinotherindustries.Itindicatesthepointatwhichproductsstopbeingmadeaccordingtoactualdemandandinsteadaremadeagainstforecastalone.
Usefulinunderstandingwhataparticularsupplychainlookslikeatanovervieworindustrylevelandhowitoperates;inparticular,indirectingattentiontoareasthatmaynotbereceivingsufficientdevelopmentattention.
Downloaded by [Columbia University] at 18:35 05 January 2013 2.Supplychainresponsematrix
3.Productionvarietyfunnel4.Qualityfiltermapping
5.Demandamplificationmapping6.Decisionpointanalysis
7.Physicalstructuremapping
Source:Hinesetal.(1997),adaptedfromSinghetal.(2006).
Table2.7þ1valuestreammappingtools.
Mappingtools
ProcessactivitymappingLHHHMHL
SupplychainresponsematrixMHHL
Productionvarietyfunnel
LMM
L
H
HQualityfiltermapping
L
Demandamplificationmapping
MM
DecisionpointanalysisMM
L
LM
LPhysicalstructuremapping
LeanvaluestreammappingHMLMH
WastesOverproductionWaitingTransport
Over-processingInventoryMotionDefects
Notes:H¼Highcorrelationandusefulness;M¼Mediumcorrelationandusefulness;L¼Lowcorrelationandusefulness.Tools1–7adaptedfromHinesandRich(1997).
2236V.RameshandR.Kodali
Downloaded by [Columbia University] at 18:35 05 January 2013 leanmaterialandinformationflowmappingand,basedontheirpriorities,tochoosethebesttoolforwasteidentificationandremoval.
TheVALSATprocess,thoughsimpleinnature,ispronetojudgementalinconsistencycreatedbythebiasedviewofthedecisionmakerswhileallocatingemphasistodifferentalternatives(Singhetal.2006).Toovercometheseshortfalls,Singhetal.haveproposedafuzzy-based,multi-preference,multi-personandmulti-criteriadecision-supportheuristicfortheselectionofvaluestreammappingtools.
Thoughtheframeworkprovidesalogicalandrationalmethodologyforselectionofdetailedvaluestreammappingtools,itfailstoaddresslong-termwastereduction.Accordingtoleanprinciples,ifamanufacturingplantwantstodeliverthehighestquality,atthelowestcost,intheshortesttimetoitscustomersandalsocontinuouslyimproveonthem,thenitmustcontinuouslyidentifyandremoveallthewastepresentinthesystem.AlthoughasingleVSMtoolmaybeeffectiveindealingwithacertaintypewastethatcurrentlyisofthehighestprioritytotheorganization,itbecomesincreasinglyredundantasotherwastestakecentrestageand/ororganisationalprioritieschange.Thereisnoone-timesolutionforhighestqualityatthelowestcostintheshortesttime.Thisisthefundamentalproblemfacedbythepreviouslydescribeddecisionprocess.Hence,thereexistsaneedtodevelopaframeworkthatnotonlyguaranteesselectionofthemostsuitableVSMtoolbasedonthecurrentorganisation’sprioritiesbutalsoproposesthebestsequenceofapplicationofVSMtoolstoremoveotherwastespresentinthesystemandmaximisetheperformancemeasuresoftheorganisation.
Thisistheobjectiveofthecurrentpaper:todevelopadecisionframeworkfortheselectionofthebestsequenceofVSMtoolapplicationtomaximisetheperformanceofaleanmanufacturerbyremovalofallwastetypesintheshortesttimeandwiththeminimumexpenditureofresources.Todoso,thepaperdescribesanovelapproachtointegratedAHP-PGPmodellingusinganiterativealgorithmtosolvetheprioritisedgoaloptimisation.
2.Anoverviewofthecaseorganisation
Theorganisationconsideredinthiscasestudyisamedium-sized,originalequipmentmanufacturer(OEM)formanyautomobilemanufacturerslocatedinthenorthernpartofIndia.Itmanufacturesdifferenttypesofautomobilecomponent(baseplates,separatorassemblies,notchbacks,etc.).Thesepartsarepredominantlyusedbymajorautomobilemanufacturers(forbothtwo-wheelandfour-wheeldrivevehicles)acrossthecountry.Table3presentsasummaryofthecaseorganisation.
Theorganisationiscurrentlyfacingalotofproblemsintermsofnotbeingabletomeetitscompetitivepriorities.Afewofthecriticalproblemsarehighvarietyandlowvolume,quality,deliveryandcostofproduction.Hence,theorganisationchosetostreamlineitsprocessestoachieveitsobjectivesofimprovingproductivity,quality,deliveryandminimumcost.Theorganisationhasastrongfocusonthesafetyandmoraleofitsworkforceandwouldliketoachieveitsbusinessobjectiveswithoutcomprisingitssafetystandards.
Topmanagementwasopentoimplementingmanagementphilosophiessuchasleanmanufacturing.Thisisbecause,asanOEMtosomeofthebiggestautomobilemanufacturersinthecountry,theyhadobtainedtheISO9000certificationofquality,whichhadproducedgoodresultsinthepastintermsofstandardisingvariousprocessesaswellasreducingdefects.Hence,theywerecontemplatingimplementingsuchmanufacturingmanagementpracticesandphilosophies.Thefirststeptostreamliningitsprocesswastoidentifyappropriatemappingtoolstomapthecurrentorganisationalprocessesandidentifywaste.TheissueherewashowtochoosethebestVSMtoolstomapandreduceallthevariousformsofwasteintheorganisationwiththeleastexpenditureoftimeandenergy.
Table3.Summaryofcaseorganisation.IndustrycharacteristicsIndustrytypeIndustrysectorProduct
Producttype
ProductionvolumeandvarietyCompanyvisionMission
Detailsaboutthecaseorganisation
DiscretetypemanufacturingManufacturing
Differenttypesofautomobilepartsfortwo-wheelandfour-wheeldrivevehiclesCriticalcomponents
Highvarietyandlowvolume
Tobeastarperformerandmarketleader
Continuousimprovementofproducts,processesandpeople
InternationalJournalofProductionResearch2237
Thisdilemmawasresolvedbytheapplicationofthedevelopeddecisionframeforleantoolselectionsoastomaximisetheperformanceofleanmanufacturing.
3.Developmentofthedecisionframework
ThedecisionframeworkselectsthebestsequenceofVSMtoolapplicationtomaximisetheperformanceofaleanmanufacturerbyremovalofallwastetypesintheshortesttimeandwiththeminimumexpenditureofmoneyandenergy.
Thestepsinvolvedinthedecisionframeworkprocessareasfollows:(1)Identificationofperformancemeasures(PM)forleanmanufacturingthatneedtobemaximised.(2)IdentificationofVSMtoolsfortheleanmanufacturerthatwillaidintheimprovementprocess.
(3)SelectionofVSMtoolforcurrentpriority:usingAHPtoselectthebestVSMtooltomaximisethecurrent
prioritywithminimumexpenditureoftimeandeffort.
(4)IdentificationofperformancemetricsforeachPMandprioritisationofthemwithrespecttothe
correspondingPM.
(5)SelectionofVSMtoolsforfuturepriorities:usingPGPtoidentifythebestsequenceofVSMtoolapplication
tomaximiseallPMsbyidentificationandsubsequentreductionofallwastetypeswithminimumexpenditureoftimeandmoney.PGPalsooutputstheoptimumvalueofperformancemetricsthatmaximisethecorrespondingPMunderthegivenconstraint.
(6)Comparisonoftheoptimumvalueofthemetricswithrealtimeperformancemetricstohelpdecidewhena
certainVSMtoolhasattainedthelimitofitsabilitytoeffectimprovementandthatitistimetoapplythenextVSMtoolinthesequenceasdefinedbyPGP.Figure1showstheflowchartforthedecisionframework.
Downloaded by [Columbia University] at 18:35 05 January 2013 Figure1.Flowchartfordecisionframework.
2238V.RameshandR.Kodali
3.1Performancemeasurement
Theobjectiveofleanmanufacturingistomaximiseperformancebyeliminatingwaste.Hence,performancemeasuresandwasteserveastheattributesandsub-attributesoftheAHPmodel,describedinalatersection,whichaidthedecisionmakerinconvertinginformation(knowledge,judgements,values,opinions,needs,wants,etc.)tonumericalvaluesbyestablishingpriorities.Thesewillalsoserveaselements(objectivefunctionandconstraints)forthePGPmodelandhencedefiningacomprehensivesetofperformancemeasuresthatprovideanall-roundviewoftheorganisation’sprioritiesandpreferencesisthemostcriticalsectionofthedecisionframework.
Inleanphilosophy,measuresgiveasenseofdirectionaswemovefromthecurrentstatetothefuturestatebykeepingouractionsalignedwiththebusiness’slong-termgoals(Rother2010).Dennis(2007)hassuggestedsixprimarycustomerfocusorperformancemeasures(PM)foraleanmanufacturer:productivity,quality,cost,delivery,safetyandandenvironmentandmorale.TherealsoexistsaneedtodefineanewsetofleanperformancemetricssoastomeasuretheintensityofthePMalongdifferentdimensions.Traditionalmetrics(relatedtomassproduction)cannotbeusedinaleanenvironmentbecausethesewillcausepeopletoresistchangingthehabitsforwhichtheywerepreviouslyrewardedandhenceperformancewilldepreciateaccordingly(TotalSystemsDevelopmentInc.2001).Themostcommonmetricinmassmanufacturingisthedesiretoproduceasmuchaspossibletoimprovetheefficiencyorutilisationofpersonnelandequipment.Thisleadstothewastecreatedbyoverproduction,ifwhatisproducedisnotsynchronisedwithwhatisrequired(customerdemand).Idealefficiency(lean)istomakeexactlywhatisneeded,whenitisneeded,inthequantitiesrequiredandatthelowestcost.
Downloaded by [Columbia University] at 18:35 05 January 2013 3.2Leanperformancemetrics
Aperformancemetricisaverifiablevariablethatisexpressedineitherquantitativeorqualitativeterms.Neelyetal.(2005)definedperformancemetricsasavariableusedtoquantifytheefficiencyandeffectivenessofanaction.DaumandBretscher(2004)extendedthedefinitionofperformancemetrictoincludeaqualitativeaspectbecausedifferentstakeholdersputdifferentvaluesonthesameoutcome,whichcannotbequantified.Also,intangiblemeasurestoalargeextentcannotbequantified,andthusrequireaqualitativemetric(Lev2001).Aperformancemetricshouldbebasedonanagreed-uponsetofdataandawell-understoodandwell-documentedprocessforconvertingthatdataintothemetric.Giventhedataandprocess,independentsourcesshouldbeabletoarriveatthesamemetricvalue(Melnyketal.2004).Tointerpretmeaningfromametric,however,itmustbecomparedtoatarget(Mahindhar2005).Basedontheseparameters,29keyperformancemetricsforleanmanufacturingwereidentified(TotalSystemsDevelopmentInc.2001;AnandandKodali2008)throughathoroughliteraturesurvey(Table4).TheperformancemetricsforthesixPMofleanmanufacturingaredescribedbelow:Leanmetricsforproductivity:
(1)WaitKanbanTime(WKT):Inaleanmanufacturingcompany(usingKanbanorpullmethods),production
mustbestoppedtoavoidthewasteofoverproduction.ThelineisinWaitKanbanTimemodewhenitawaitstheordertoresumemakingtheproductsrequiredbythecustomer.ConsistentlyhighamountofWaitKanbanTimeindicatesanimbalancebetweenprocesses,causedbygreatercapacitythanrequiredtomeetthecustomerdemand.
(2)Partsperlabourhour(PLH):Thisconsidersthevariabilityoftheworkforce,aswellastheoverallefficiency
oftheproductionline.Thiscalculationisthetotalnumberofgood(non-defective)partsproduced,dividedbythetotallabourhoursworked,minusanyschedulednon-productiontime(includingWaitKanbanTime)(3)Totalpartsproduced(TPP):Thisisnecessarytounderstandtheproductionprocessbecauseall
measurements,suchasyieldorscraprate,arecomparedtothetotalpartsproducedandexpressedasapercentageofthistotal.
(4)Linestoptime(LST):Thisistheamountoftimethelineisstoppedforanyreasonotherthanequipment
downtimeorWaitKanbanTime.Causesincludepartshortage,qualityissues,etc.ItisnormallyreportedasapercentageofstandardoperatingtimeminusWaitKanbanTime.
(5)Equipmentdowntime(EDT):Itisthepercentageoftimethemachineisunabletoproduceproductduring
scheduledoperationtime.
(6)Shortingcustomerprocess(SCP)and:Thismeasureindicatesaprocess’sabilitytoproducewhatisneeded,
whenitisneededandaccordingtotheprocessTakttime.Itshouldbeusedonlyifthereisanongoingproblem,orifitisthebestmeasureofprocesscapability.Itcanbecalculatedbydividingtheamountofstoptimebystandardoperationtime,minustheWaitKanbanTime.
InternationalJournalofProductionResearch
Table4.ListofkeyPMmetricsforleanmanufacturing.
Performancemetric
123456710
WaitKanbanTimePartsperlabourhourTotalpartsproducedLinestoptime
EquipmentdowntimeShortingcustomerprocessStoppingsupplierprocessChangeovertimeCustomersatisfactionDefectsrepairedinprocessYieldScrap%ScrapcostTotalinventoryLabourcontentRawmaterialvarianceMisseddeliverycyclesQuickresponsetocustomerDeliveryreliability
Numberofwork-relatedinjuriesLostworkdays
NumberofmedicalvisitsWork-relatedrestrictionsEmploymentsecurity
EmployeetrainingandanddevelopmentNumberofawardsandandrewardsdisbursedEmployeeinvolvementCultureGovernance
p
ppp
pppppppppppppp
pp
Quantitative
ppp
ppppp
pQualitative
Reference
2239
11121314151617181920212223242526272829
TotalSystemsDevelopmentInc.(2001)TotalSystemsDevelopmentInc.(2001)TotalSystemsDevelopmentInc.(2001);Anandetal.(2008)
TotalSystemsDevelopmentInc.(2001)TotalSystemsDevelopmentInc.(2001);Anandetal.(2008)
TotalSystemsDevelopmentInc.(2001)TotalSystemsDevelopmentInc.(2001)TotalSystemsDevelopmentInc.(2001);Dennis(2007);AnandandKodali(2008);Shingo(19)
TotalSystemsDevelopmentInc.(2001);Anandetal.(2008)
TotalSystemsDevelopmentInc.(2001);AnandandKodali(2008)
TotalSystemsDevelopmentInc.(2001);AnandandKodali(2008)
TotalSystemsDevelopmentInc.(2001)TotalSystemsDevelopmentInc.(2001);AnandandKodali(2008)
TotalSystemsDevelopmentInc.(2001);AnandandKodali(2008)
TotalSystemsDevelopmentInc.(2001);AnandandKodali(2008)
TotalSystemsDevelopmentInc.(2001)TotalSystemsDevelopmentInc.(2001);AnandandKodali(2008)
TotalSystemsDevelopmentInc.(2001)TotalSystemsDevelopmentInc.(2001);AnandandKodali(2008)
TotalSystemsDevelopmentInc.(2001)TotalSystemsDevelopmentInc.(2001)TotalSystemsDevelopmentInc.(2001)TotalSystemsDevelopmentInc.(2001);Dennis(2007)
TotalSystemsDevelopmentInc.(2001);Dennis(2007);AnandandKodali(2008)TotalSystemsDevelopmentInc.(2001);Dennis(2007);AnandandKodali(2008)TotalSystemsDevelopmentInc.(2001);Dennis(2007);AnandandKodali(2008)TotalSystemsDevelopmentInc.(2001);Dennis(2007)Dennis(2007)
Dennis(2007);ThompsonandWallace(1996)
Downloaded by [Columbia University] at 18:35 05 January 2013 (7)Stoppingsupplierprocess(SSP):Thisisthesameastheshortingcustomerprocess(SCP).
(8)Changeovertime(C/T):Alengthychangeovertimecontributestoalackofefficiency.Timelostisgenerally
compensatedforbyrunninglargerbatchsizes.Itisthetimerecordedinminutesfromthelastgoodofoneparttypetothefirstgoodofanotherparttype.Leanmetricsforquality:
(9)Customersatisfaction(CUS):Thisisdefinedasthenumberofdefectivepartsreturned
fromthefollowingprocessorcustomer.Itiscalculatedasapercentageofthetotalpartsproducedbyaprocess.
2240V.RameshandR.Kodali
(10)Defectsrepairedinprocess(DEF):Productsarecategorisedaseitheracceptablepartsasproduced(firstrun
orfirsttimethrough),partsrequiringreworkorscrapparts.Thesecondcategoryofpartsisrecordedinthismetricandrepresentedasapercentageoftotalpartsproduced.
(11)Yield(YLD):Thisreferstothepercentageoftotalpartsproducedthatareacceptedasis,i.e.withoutany
rework.
(12)Scrap%(SCR):Thesepartsrequireexcessivereworkandhencearescrappedandrecycledintoraw
materials(ifpossible)thanrectifiedbackintotheflow.Thismetricisrelatedtodefectsrepairedinprocess(DEF)andYield(YLD)bythefollowingequation:
SCR¼1ÀYLDÀDEF
Leanmetricsforcost:
(13)Scrapcost(SCC):Totalcostassociatedwithscrappedparts/discardedmaterials.
(14)Totalinventory(TIN):Thetotalcostassociatedwithanystandinginventory(finishedgoods,WIP,raw
materials).Traditionally,inventoryhasbeenviewedasanassetbutleanphilosophyfocusesoncompletereductionofalltypesofinventory.
(15)Labourcontent(LCN):Foraleanmanufacturer,labourisafixedcost.Thisisderivedfromthepractice
withinToyotaoflifetimeemployment.LabourcontentisthenumberofworkersrequiredtosuccessfullyoperatealineafterTakttimeandstandardisedworkconsiderations.
(16)Rawmaterialvariance(RMV):Standardsaredevelopedfortheamountofrawmaterialperpart.Totalraw
materialconsumptionshouldbecomparedtothestandardquantity-per-partmultipliedbythetotalpartsproduced,whichwillprovideavariancetothestandard.Thismultipliedbytheaveragecostofrawmaterialsgivesthevarianceincostterms.Highvariancemaybecausedbyover-processingwaste,highscraprateormaterialwastage(spillage,excesstrimscrap).Leanmetricsfordelivery:
(17)Misseddeliverycycles(MDC):Thismetricmeasurestheefficiencyofmaterialhandlersworkinginapull-basedproductionoperation.Failuretocompleteadeliverycycleresultsinfluctuationsinthematerialprocess,andthecustomerprocessdoesnothavesufficientpartsattheoperationtocontinueproduction.Excessmisseddeliverycyclesalsoincreasesthenumberofproductionkanbansdepositedinthesupplyoperation,whichmayoverwhelmit.
(18)Quickresponsetocustomer(QRC):Thismetricmeasurestheabilityoftheprocesstomeetfluctuationsin
customerdemand.Thenumberofordersoverandabovetheaverageordersizeisrecordedandthenumberofsuchordersmetismeasuredasapercentageofthelatter.
(19)Deliveryreliability(DRL):Deliveryreliabilityisamorecomprehensivemetricascomparedtopastdue
ordersusedintraditionalmanufacturingsetups.Itincludesthepercentageofordersdeliveredontimethatarecorrectandcomplete(notpartialshipment).Thisnumberprovidesthemostaccuratereflectionofcustomersatisfaction.Leanmetricsforsafety:
(20)Numberofwork-relatedinjuries(INJ):Thesetypicallyfallintotwobroadcategories–accidentsorsudden
injuries,includingcuts,contusions,etc.,andcumulativetraumadisordersorrepetitivemotioninjuries,includingcarpeltunnelsyndromeandthoracicoutletsyndrome.
(21)Lostworkdays(LWD):Operationaldowntimeresultingfromwork-relatedinjuriesofpersonneland/or
healthandandsafetyhazards.
(22)Numberofmedicalvisits(MDV):Numberofvisitstoamedicalfacilityduetoinjuriesand/orpossibleorreal
healthhazards.
(23)Work-relatedrestrictions(WRR):Numberofwork-relatedrestrictionsresultingfromthegeneral
operationalenvironmentintheplant.Leanmetricsformorale:
(24)Employmentsecurity(EMS):Jobsecurityisoneofthecorevaluesofaleanmanufacturer.Lean
manufacturingdoesnotmeaneliminatingjobs.Itmeansreducingthelabourcontentofoperationssothat
ð1Þ
Downloaded by [Columbia University] at 18:35 05 January 2013 InternationalJournalofProductionResearch2241
(25)(26)(27)
(28)
(29)
Downloaded by [Columbia University] at 18:35 05 January 2013 workersarefreetobeinvolvedinimprovementactivitiesaroundtheplant.Thenumberofemploymentcontractsterminatedinafixedperiodisagoodmeasureofthesenseofjobsecurityintheorganisation.
Employeetrainingandanddevelopment(ETD):Numberofemployeetraininganddevelopmentalprogrammesundertakeninanorganisationinafixedperiodoftime.
Numberofawardsandandrewardsdisbursed(A/R):Thenumberofawards(bestemployeeofthemonth,year,etc.),bonusesforperformanceandsoon.
Employeeinvolvement(EMI):Thisisacombinedmeasureofallthegroupactivitiesanaverageemployeemaybeinvolvedin,e.g.number.ofKaizencircles,averagenumberofsuggestionsperemployee,etc.
Culture(CUL):ThecultureofleanproductioncomprisesPDCA,standardisation,visualmanagement,teamwork,intensity,paradoxandleanproductionasadopath.Thelevelofawarenessandintensityofinvolvementoftheemployeesintheseactivitiesdefinesthequalityoftheculture.Sincethisisaqualitativemeasure,aLikertscale-basedquestionnaire(Trochim2006)willbethemostappropriatetooltoquantifythequalityofcultureinanorganisation.
Governance(GOV):Corporategovernanceisdefinedasthesetofprocesses,customs,policies,lawsandinstitutionsaffectingthewayacorporation(orcompany)isdirected,administeredorcontrolled(Wikipedia2010).Inaleanmanufacturer,governancehasacriticalimpactonhowateamisorganised,functionsandbehaves(ThompsonandWallace1996),andsinceateamformstheheartofleanimprovementoperations(TotalSystemsDevelopmentInc.2001;Dennis2007),thequalityofgovernanceisacriticalmeasureofteammorale.ThepreviouslymentionedLikertscale-basedquestionnairemaybeappliedhereaswelltoadjudgethequalityofgovernanceinaleanmanufacturer.
Forthedecisionframework,eachofthe29performancemetricsiscalculatedinrealtimeand,aftercomparingitwithanachievabletargetperformance(Melnyketal.2004),isscaledtoavaluebetween0and1.Thisisdonesoastostandardisethedimensionsforeachperformancemetric.
3.3DevelopmentofAHP
TheAHPhasbeenwellreceivedintheliterature(Roger1987).Applicationsofthismethodologyhavebeenreportedinnumerousfields(Chandra1998).ThegeneralapproachoftheAHPmodelistodecomposetheproblemandtomakepair-wisecomparisonsofalltheelementsonagivenlevelwithreferencetorelatedelementsintheleveljustabove.Ahighlyuser-friendlycomputermodelhasbeendeveloped,whichassiststheuserinevaluatingtheirchoices.TheschematicofthemodelisshowninFigure2.
Figure2.SchematicoftheAHPmodel.
2242V.RameshandR.Kodali
Descriptionofthemodel
Athoroughanalysisoftheproblemisrequired,alongwiththeidentificationoftheimportantattributes/criteriainvolved.Theattributes/criteria(level2)usedinAHPtoachievethegoalarethesixperformancemeasuresofaleanmanufacturer.Theseare:
......
Productivity(PRD)Quality(QUA)Cost(COS)Delivery(DLV)Safety(SFT)Morale(MRL)
Thesevenwastes(refertosection1)arethesub-attributes/criteriaforeachofthePMofleanmanufacturing,i.e.theattributesatlevel2usedintheAHPmodel.Theseare:
.......
Overproduction(OPD)Waiting(WTG)Transport(TRN)
Over-processing(OPR)Inventory(INV)Motion(MOT)Defects(DEF)
Downloaded by [Columbia University] at 18:35 05 January 2013 TheVSMtoolsarethealternativesamongstwhichtheAHPaidsthedecisionmakertochoosethebesttoolfortheirindustrybasedonthecurrentpriority.TheVSMtoolsconsideredinthepresentmodel(seeTable1foradetaileddescription)are:
........
Processactivitymapping(PAM)Supplychainresponsematrix(SCR)Productionvarietyfilter(PVF)Qualityfiltermapping(QFM)
Demandamplificationmapping(DAM)Decisionpointanalysis(DPP)
Physicalstructuremapping:(a)Volumeversus(b)Value(PSM)Leanvaluestreammapping(LVS)
Analyticalhierarchyprocessmethodology
Theanalyticalhierarchyprocess(Satty1982)isapracticalapproachtosolvingrelativelydifficultproblems.TheAHPenablesthedecisionmakertorepresentthesimultaneousinteractionofmanyfactorsincomplex,unstructuredsituations.Judgementswerecollectedthroughacompleteplant-levelsurveyandmultipleroundsofpersonalinterviewswiththetopmanagementofthecaseorganisation.Thesewereprimarilyfocusedonelicitingthepreferencesthattheybelievewereimportantforsustainingthecompany’spositionasamarketleaderintheautomotivepartsindustry.ThesewereincludedinAHPforeachcriterionandsubcriterionforalllevelsofhierarchy.Pair-wisecomparisonsofcriterionateachlevelwasdoneona1–9pointscale:1reflectingequalweightand9reflectingabsoluteimportanceofoneoveranother.
BelowarethestepstofollowinusingtheAHP(Roger1987):(1)Definetheproblemanddeterminetheobjective.
(2)Structurethehierarchyfromthetopthroughtheintermediatelevelstothelowestlevel(Figure2).
(3)Constructasetofpair-wisecomparisonmatricesforeachofthelowerlevels,takingintoconsiderationthe
previouslevelasagoaltowhichthesesub-criteriabelong.LevelIIfactorsaredecomposedintosub-criteria.Ifelement‘a’dominatesoverelement‘b’,thenthewholenumberintegerisenteredinrowA,columnB,andthereciprocalisenteredinrowB,columnA.Iftheelementsbeingcomparedareequal,1isassignedtobothpositions.
À1Þ
judgementstodevelopthesetofmatricesinStep3.(4)Utilisethenðn2(5)Determinetheconsistencyofthepair-wisecomparisonsusingeigenvalues.Todoso,normalisethecolumn
ofnumbersbydividingeachentrybythesumofallentries.Thensumeachrowofthenormalisedvaluesand
InternationalJournalofProductionResearch
Table5.Normalisedcomparisonmatrix.
hPRDi
hPRDihQUAihCOSihDLVihSFTihMRLi
0.4270.1420.0850.0610.1420.142
hQUAi0.50.2150.0240.0310.0430.043
hCOSi0.2080.3750.0420.1250.1250.125
hDLVi0.3000.3000.0140.0430.1290.214
hSFTi0.2810.4690.0310.0310.0940.094
hMRLi0.2850.4750.0320.0190.0950.095
hSUMi2.1461.9760.2280.3100.6280.713
2243
Principalvector
0.3580.3290.0380.0520.1050.119
Notes:Consistencyindex(CI)¼0.1206;Consistencyratio(CR)¼0.0972.
taketheaverage.Thisprovidestheprincipalvector.Table5tabulatesthenormalisedcomparisonmatrix.Tochecktheconsistencyofthejudgements,letthepair-wisecomparisonmatrixbedenotedbyM1andtheprincipalvectorbyM2.
ThendefineM3¼M1ÃM2;and
Downloaded by [Columbia University] at 18:35 05 January 2013 M3
;M2
max¼averageoftheelementsofM4;
maxÀN
ConsistencyIndexðCIÞ¼;
NÀ1CI
ConsistencyRatioðCRÞ¼;
RCI
correspondingtoNwhere
RCI:RandomConsistencyIndex;andM4¼
N:Numberofelements
TheRandomIndexTableisasfollows:
NRCI
10
20
30.6
41
51.1
61.24
71.41
81.45
91.51
IfCRislessthan10%,thedecisionmaker’sjudgementmaybeconsistentenoughtogiveusefulweightingestimatesforvariousdecision-makingcriteria.IfCRisgreaterthan10%,thereareinconsistenciesinthejudgements,i.e.inthepair-wisecomparisonmatrix,andtheseshouldbeimprovedsuchthattheCRisalwayslessthan10%.
(6)PerformSteps3–5foralllevelsandclustersinthehierarchy.
(7)Nextexaminetheeffectofsub-criterionoflevelIIIontherespectivecriteriaoflevelII.Theprocedureis
identicaltothepair-wisecomparisonanalysisabove.SeeTable6forattributeweights.
(8)Analysethematrixforthepair-wisecomparisonsofthealternativesforthebottom-mostsub-criteriausing
theapproachabove.Forthepair-wisecomparisonofeachofthealternativesundereachLevelIIIsub-criterion,usethecorrelationmatrixdevelopedbyHinesetal.(1998)betweenthewastesandmappingtool(seeTable2).SeeTable7fordatasummary.
(9)Calculatethedesirabilityindexforeachalternativebymultiplyingeachvaluein‘weightofsub-criteria’
columnbytherespectivevaluein‘criteriaweight’column,andthenmultiplyingbythevalueforeachrespectivealternativeandsummingtheresults(seeTable8).
3.4DevelopmentofPGP
ThedecisionframeworkdevelopedinthisstudyisbasedonanovelintegratedAHP-PGPmodel.IntegratedAHP-PGPapproacheshavebeenextensivelyusedbySchniederjansandGravin(1997),Badri(2001),Radcliffeand
2244
Table6.Weightofattributes.
Weightofsub-criteriaLevelIII0.0900.0470.0260.1790.1250.1390.3940.1410.0690.0900.0270.2150.0580.4000.1030.0420.0650.1290.2280.0290.4030.0590.1230.0650.1450.2210.0260.3620.0610.0310.3630.0310.0810.2900.1420.0440.1820.0670.0290.0950.3400.243
V.RameshandR.Kodali
Sub-criteriaOPD(PRD)WTG(PRD)TRN(PRD)OPR(PRD)INV(PRD)MOT(PRD)DEF(PRD)OPD(QUA)WTG(QUA)TRN(QUA)OPR(QUA)INV(QUA)MOT(QUA)DEF(QUA)OPD(COS)WTG(COS)TRN(COS)OPR(COS)INV(COS)MOT(COS)DEF(COS)OPD(DLV)WTG(DLV)TRN(DLV)OPR(DLV)INV(DLV)MOT(DLV)DEF(DLV)OPD(SFT)WTG(SFT)TRN(SFT)OPR(SFT)INV(SFT)MOT(SFT)DEF(SFT)OPD(MRL)WTG(MRL)TRN(MRL)OPR(MRL)INV(MRL)MOT(MRL)DEF(MRL)
CriterialevelII0.3580.3580.3580.3580.3580.3580.3580.3290.3290.3290.3290.3290.3290.3290.0380.0380.0380.0380.0380.0380.0380.0520.0520.0520.0520.0520.0520.0520.1050.1050.1050.1050.1050.1050.1050.1190.1190.1190.1190.1190.1190.119
PAM0.0820.2710.4050.3920.0740.4120.1620.0820.2710.4050.3920.0740.4120.1620.0820.2710.4050.3920.0740.4120.1620.0820.2710.4050.3920.0740.4120.1620.0820.2710.4050.3920.0740.4120.1620.0820.2710.4050.3920.0740.4120.162
SCR0.1290.2710.0580.0420.1830.1420.0490.1290.2710.0580.0420.1830.1420.0490.1290.2710.0580.0420.1830.1420.0490.1290.2710.0580.0420.1830.1420.0490.1290.2710.0580.0420.1830.1420.0490.1290.2710.0580.0420.1830.1420.049
PVF0.0210.0670.0370.2210.0800.0510.0490.0210.0670.0370.2210.0800.0510.0490.0210.0670.0370.2210.0800.0510.0490.0210.0670.0370.2210.0800.0510.0490.0210.0670.0370.2210.0800.0510.0490.0210.0670.0370.2210.0800.0510.049
QFM0.00.0280.0330.1090.0220.0490.4270.00.0280.0330.1090.0220.0490.4270.00.0280.0330.1090.0220.0490.4270.00.0280.0330.1090.0220.0490.4270.00.0280.0330.1090.0220.0490.4270.00.0280.0330.1090.0220.0490.427
DAM0.1270.1060.0330.0420.1830.0490.0500.1270.1060.0330.0420.1830.0490.0500.1270.1060.0330.0420.1830.0490.0500.1270.1060.0330.0420.1830.0490.0500.1270.1060.0330.0420.1830.0490.0500.1270.1060.0330.0420.1830.0490.050
DPA0.1270.1060.0710.1090.0860.0490.0500.1270.1060.0710.1090.0860.0490.0500.1270.1060.0710.1090.0860.0490.0500.1270.1060.0710.1090.0860.0490.0500.1270.1060.0710.1090.0860.0490.0500.1270.1060.0710.1090.0860.0490.050
PSM0.0220.0260.1990.0420.0400.0490.0490.0220.0260.1990.0420.0400.0490.0490.0220.0260.1990.0420.0400.0490.0490.0220.0260.1990.0420.0400.0490.0490.0220.0260.1990.0420.0400.0490.0490.0220.0260.1990.0420.0400.0490.049
LVS0.4270.1240.1630.0420.3330.1990.1650.4270.1240.1630.0420.3330.1990.1650.4270.1240.1630.0420.3330.1990.1650.4270.1240.1630.0420.3330.1990.1650.4270.1240.1630.0420.3330.1990.1650.4270.1240.1630.0420.3330.1990.165
Downloaded by [Columbia University] at 18:35 05 January 2013 Schniederjans(2003),CebiandBayraktar(2003),Percin(2006)andBhagwatandSharma(2009)toexplorethevariouspreferencesoffirms.Inthesestudies,integratingAHPwiththePGPmodelmadeitpossiblefordecisionmakerstoincorporateadjustedweightingsonselecteddecisioncriteria.Then,thePGPmodelpermittedanaddedprioritystructurereflectingtheaddedmathematicalweighting.ThePGPmethodologyforperformancemeasureimprovementisdevelopedinthefollowingsection.
Performancemetricweightsanalysis
ThefirststepinthePGPmodelbuildingprocessistocalculatetheprioritisedweightsofperformancemetrics.Forthis,thepriorityofagivenperformancemetricwithrespecttoagivenmeasureneedstobeidentified.Apair-wisecomparisonusingthecollectivejudgementsobtainedfromthecaseorganisation,similartotheAHPprocess,
InternationalJournalofProductionResearch
Table7.Datasummary.Sub-criteriaOPD(PRD)WTG(PRD)TRN(PRD)OPR(PRD)INV(PRD)MOT(PRD)DEF(PRD)OPD(QUA)WTG(QUA)TRN(QUA)OPR(QUA)INV(QUA)MOT(QUA)DEF(QUA)OPD(DEF)WTG(DEF)TRN(DEF)OPR(DEF)INV(DEF)MOT(DEF)DEF(DEF)OPD(DLV)WTG(DLV)TRN(DLV)OPR(DLV)INV(DLV)MOT(DLV)DEF(DLV)OPD(SFT)WTG(SFT)TRN(SFT)OPR(SFT)INV(SFT)MOT(SFT)DEF(SFT)OPD(MRL)WTG(MRL)TRN(MRL)OPR(MRL)INV(MRL)MOT(MRL)DEF(MRL)
hPAMi0.0030.0050.0040.0250.0030.0210.0230.0040.0060.0120.0040.0050.0080.021000.0010.0020.00100.00200.0020.0010.0030.0010.0010.0030.0010.0010.0150.0010.0010.0130.00200.0060.0030.0010.0010.0170.005
hSCRi0.0040.0050.0010.0030.0080.0070.0070.0060.0060.00200.0130.0030.0060.0010000.00200.00100.002000.00200.0010.0010.0010.00200.0020.0040.0010.0010.006000.0020.0060.001
hPVFi0.0010.00100.0140.0040.0030.0070.0010.0020.0010.0020.0060.0010.0060000.0010.00100.0010000.0020.00100.001000.0010.0010.0010.0020.00100.00100.0010.0010.0020.001
hQFMi0.002000.0070.0010.0020.060.0030.0010.0010.0010.0020.0010.0560000.001000.0070000.001000.008000.001000.0010.00600.0010000.0020.012
hDAMi0.0040.00200.0030.0080.0020.0070.0060.0020.00100.0130.0010.00700000.00200.00100.001000.00200.0010.00100.00100.0020.0010.0010.0010.002000.0020.0020.001
hDPAi0.0040.0020.0010.0070.0040.0020.0070.0060.0020.0020.0010.0060.0010.0070000.0010.00100.00100.00100.0010.00100.0010.00100.00300.0010.0010.0010.0010.0020.00100.0010.0020.001
hPSMi0.00100.0020.0030.0020.0020.0070.0010.0010.00600.0030.0010.0060000000.001000.0010000.001000.008000.0010.00100.0010.002000.0020.001
2245
hLVSi0.0140.0020.0020.0030.0150.010.0230.020.0030.00500.0240.0040.0220.0020000.00300.0030.0010.0010.00100.00400.0030.00300.00600.0030.0060.0020.0020.0030.00100.0040.0080.005
Downloaded by [Columbia University] at 18:35 05 January 2013 Table8.Decisionindexforthedesirabilityofeachalternative.VSMToolDecisionindex
PAM0.2272
SCR0.107
PVF0.0674
QFM0.1811
DAM0.0799
DPA0.0744
PSM0.0562
LVS0.2068
isadoptedhere.
(1)Inthisstep,each29performancemetricsundergoesapair-wisecomparisondependingonitsrelativeeffect
onthecorrespondingperformancemeasure.Apair-wisecomparisonmatrixsimilartotheapproachdescribedintheAHPprocessandtheprincipalvectorforeachoftheperformancemetricswasrecordedastheweight.ThisanalysiswasperformedontheperformancemetricsforeachPMofleanmanufacturing.
2246V.RameshandR.Kodali
Table9.Resultsofperformancemetricandalternativeanalysis.
Mappingtoolweightageforthemetrics
PerformanceMetricWKTPLHTPPLSTEDTSSPSCPC/CQRCDRLSCCTINLCNRMVCUSDEFYLDSCRINJLWDMDVWRREMSETDA/REMICULGOV
Weightage0.0300.1510.0910.1780.1380.00.00.3050.1430.4290.4290.6250.1250.1250.1250.5010.0770.1590.2630.2730.5330.1280.0670.2210.0690.0490.2210.2210.221
hPAMi0.0320.2750.2750.1770.0830.1420.1420.3300.2570.0390.0610.00.0440.0990.0480.1690.0710.0970.1400.4670.4670.4670.4210.0280.1250.1250.2850.1250.125
hSCRi0.2370.0620.0620.0960.0830.00.00.0500.0480.1650.3550.00.1950.0310.0480.0700.0710.0390.1010.0610.0610.0610.0550.1150.1250.1250.00.1250.125
hPVFi0.0720.0620.0620.0430.0830.00.00.0500.0480.0450.0610.1060.0620.0670.4030.0800.0710.1570.1400.0610.0610.0610.0550.0470.1250.1250.00.1250.125
hQFMi0.0320.0620.0620.2400.4170.3340.3340.0500.0480.0450.0610.4790.0270.0830.2330.3990.5000.4020.4350.0610.0610.0610.0550.3450.1250.1250.1360.1250.125
hDAMi0.1570.0620.0620.0430.0830.00.00.0500.0480.3800.1700.0720.1190.2030.0480.0700.0710.0410.0460.0610.0610.0610.0550.0960.1250.1250.00.1250.125
hDPAi0.1250.0620.0620.0430.0830.00.00.2030.2120.0740.1700.0720.0800.1090.0480.0700.0710.0410.0460.0610.0610.0610.0550.0960.1250.1250.00.1250.125
hPSMi0.0690.0620.0620.0430.0830.00.00.0520.0510.0390.0610.0720.1190.0370.1240.0700.0710.0410.0460.0610.0610.0610.0550.0960.1250.1250.00.1250.125
hLVSi0.2750.3560.3560.3180.0830.2560.2560.2170.2880.2120.0610.0720.30.3700.0480.0700.0710.1810.0460.1680.1680.1680.2510.1750.1250.1250.3090.1250.125
Downloaded by [Columbia University] at 18:35 05 January 2013 (2)Inthenextstep,apair-wisealternativeanalysisforeachofthe29performancemetricswascarriedoutto
evaluatetheimpactofeachmappingtoolinimprovingindividualperformancemetrics.TheresultsforeachcompleteperformancemetricandalternativeanalysisaregiveninTable9.Theweightscalculatedafterthepair-wisecomparisonareonascaleof0to1(andthesumofalltheweightsisequalto1).Thiscanalsobeconsideredasindicatingametric’srelativeimportanceoritsrelativepercentagecontributionintheoverallPM.Thisrelativepercentagecontributionisintegratedwiththeoptimisationmethod,sothattheoptimallevelofeachconsideredperformanceindicatorcanbeidentified.
Descriptionofthemodel
Thepurposeoftheapproachistoaidthedecisionmakerinchoosingwhenandinwhatsequenceanewmappingtoolshouldbeintroducedtoproducethemaximumimprovementwiththeleastexpenditureoftimeandenergy.Eachsubsequentmappingtoolincrementallybuildsonthebenefitsofthepreviouslyappliedmappingtool.ThePGPguaranteestomaximiseeachperformancemeasureundergivenconstraints.
ElementsofPGP
FormathematicalmodellingofthePGP,firstthedecisionvariablemustbedefined,followedbytheobjectivefunction(goal)andconstraintsintermsofthedecisionvariable.
Decisionvariable
Here,theobjectiveistofindthebestsequencefortheapplicationoftheVSMtools,suchthattheperformancemetricsareoptimisedwhilesimultaneouslymaximisingeachoftheperformancemeasuresinthelongterm.Therefore,theperformancemetricsidentifiedfortheperformancemeasuresandprioritisedthroughperformance
InternationalJournalofProductionResearch2247
metricsandalternativeanalysesewillbeconsideredasthedecisionvariables.Theobjectivefunctionsandconstraintsneedtobefurtherdefinedintermsoftheperformancemetrics,i.e.thedecisionvariables.
Inthegoalprogrammingmodel,thedecisionvariablesaredifferentperformancemetrics,whicharerepresentedbyXk(wherekvariesfrom1to29,from1to8forproductivityperformancemetrics,9to12forqualitymetrics,13to16forcostmetrics,17to19fordeliverymetrics,20to23forsafetymetricsand24to29formetricsofmorale).Objectivefunctions
TheideaofthePGPistosetobjectivesinorderofpriority(GhodsypourandO’Brien2001;BhagwatandSharma2009).Inthiscase,theobjectiveistomaximisethesixperformancemeasures,i.e.productivity,quality,cost,delivery,safetyandmorale,intheorderasprioritised.Thesixobjectivefunctionsinorderoftheirpriorityare:(1)(2)(3)(4)(5)(6)
MaximiseMaximiseMaximiseMaximiseMaximiseMaximise
productivity(consistingofperformancemetrics1to8)quality(consistingofperformancemetrics9to12)morale(consistingofperformancemetrics24to29)safety(consistingofperformancemetrics20to23)delivery(consistingofperformancemetrics17to19)cost(consistingofperformancemetrics13to16)
X
Downloaded by [Columbia University] at 18:35 05 January 2013 Thegoalsoftheproblemcanberestatedas:
maximizePi¼
WikXksuchthatk2i,
where,Pi¼Objectivefunctionsandi¼1to6(i¼1forproductivity,i¼2forquality,i¼3formorale,i¼4forsafety,i¼5fordeliveryandi¼6forcost)k¼1,2,3,...,n(n¼numberofperformancemetrics).(Inthepresentstudyn¼29,andk¼1,2,3,4,5,6,7,82(i¼1),k¼9,10,11,122(i¼2),k¼13,14,15,162(i¼6),k¼17,18,192(i¼5),k¼20,21,22,232(i¼4)andk¼24,25,26,27,28,292(i¼3).)Wik¼Performancemetricanalysisweightforthekthperformancemetricoftheithlevel(seeTable9,Column2).
Mathematically,theobjectivesaregivenas:
X
maximiseP1¼W1kXksuchthatk2i¼1,ðProductivityÞð2Þ
maximiseP2¼maximiseP3¼maximiseP4¼maximiseP5¼
XX
W2kXksuchthatk2i¼2,W3kXksuchthatk2i¼3,W4kXksuchthatk2i¼4,
ðQualityÞðMoraleÞðSafetyÞðDeliveryÞðCostÞ
ð3Þð4Þð5Þð6Þð7Þ
X
X
W5kXksuchthatk2i¼5,W6kXksuchthatk2i¼6,
maximiseP6¼
X
Constraints.Inpractice,theconstraintsareontheavailabilityofmanpower,time,energyandtheabilityofthe
decisionmakertokeeptheemployeesmotivatedintheimprovementprocess.Mathematically,theseconstraintshavebeenmodelledasafunctionofthevariousVSMtools.ThereareeightVSMtools:PAM,SCR,PVF,QFM,DAM,DPA,PSMandLVS.Asthetoolshavebeenevaluatedunderdifferentperformancemetrics(Table9),thesehavebeenconsideredasconstraintsinthismodel.ThustheconstraintsonthegoalprogrammingarethedifferentVSMtools(Equation(8))andthedifferentperformancemetrics(Equation(9)).
nXoXX
Wikðk2iÞ,Wlkð8ÞWikXk Min:
k¼1,2,3,4...nðn¼29Þ
l¼1,2,3,4,5,6,7,8ðforeightVSMtoolsÞ
0 Xk 1
ð9Þ
2248V.RameshandR.Kodali
InEquation(8),lrepresentstheeightVSMtoolshence,therewillbeeightconstraintsfortheoptimisationofpriority1,i.e.productivity.
PGPmethodology
UsingTORA(optimisationsoftware),sequentialprogrammingwasinitiatedwiththeoptimisationofthefirstpriority,i.e.productivityandnineconstraints(eightforVSMtoolsandoneonXk).Theiterationcounterwassettoq¼0andinitialise\"¼0.01.Thealgorithmforsequentialoptimisationisasfollows:
Step1:OptimiseithPriority(Pi)underthegivenconstraints.ObtainthebestperformancelevelsforXk(k2i).Setiterationcounterq¼qþ1
Step2:SubstitutetheoptimumvaluesofXk(k2i)intotheqthiterationconstraintstocalculatetheconstraintsforthenextpriority(i¼iþ1).LettheR.H.S.forthelthconstraintoftheqthiterationbeR:H:S:ql
qþ1Þ
(a)IftheR.H.S.foranyoftheconstraintsforthe(qþ1)thiterationfallsbelow\"i.e.R:H:S:ð \"(l¼1,2,3,l
4,5,6,7,8)eliminatetheconstraintfromfurtheriterations.
qþ1Þ
(b)IftheR.H.S.foralltheconstraintsis!\"i.e.R:H:S:ð!\"proceedtoStep3.l
Downloaded by [Columbia University] at 18:35 05 January 2013 Step3:RecordthedifferencebetweentheR.H.S.forthelthconstraint(l¼1,2,3,4,5,6,7,8)oftheqthiterationandthelthconstraint(l¼1,2,3,4,5,6,7,8)ofthe(qþ1)thiteration.LetthedifferencebeDlforthelthconstraint.
ÂÂÃÃqÂÂÃÃððqþ1ÞÞ
g½½fDl¼½½R:H:S:lÀ½½R:H:S:l
ð10Þ
Step4:CalculateDmax¼MaxfDlg(l¼1,2,3,4,5,6,7,8;ignoretheeliminatedconstraints.Recordlcorresponding
toDmax.
(a)IftheDmaxmapstomorethanonel,lhasthesamemaximumvalueforanyiteration.Anyoneofthetools
maybechosendependingontheresultsofthesubsequentiteration.Step5:Fortheqthiteration,theVSMtoolcorrespondingtolobtainedinStep4isthebestsuitedVSMtooltomaximisetheithpriority(Pi).
Step6:Ifq¼6TERMINATE.Or,ifi¼iþ1gotoStep1.
ThealgorithmwasimplementedforthecasemanufacturingorganisationtoidentifytheoptimumlevelsofoperationoftheperformancemetricsandalsotofindthebestsequenceofVSMtoolthatwillmaximisethePMs.Table10tabulatestheresultsattheendofthefirstiterationofthemodel.
InadditiontothebestsequenceofVSMselection,theresultsofPGPwillprovidethevaluesoftheperformancemetricstomaximiseoverallperformance(Table11).TheseoptimisedvaluesoftheperformanceindicatorwillhelpthedecisionmakertoidentifyandfocusonperformancemetricsthatarecrucialforoverallPMofthesystem.ThePGPwillidentifytherequiredoptimisedvaluesoftheperformanceindicatorsasabenchmark.ThedecisionmakerhastoensurethattheactualvaluesofthemetricsneverfallbelowthevaluesobtainedbyPGPoptimisation.Thisshouldbeachievedthroughadequatemappingefforts.OncetheperformancemetricsforaparticularperformancemeasurestabilisearoundthevalueidentifiedbythePGPoptimisation,thedecisionmakermustnowfocustheirattentiononthenextpriorityandchanneltheorganisation’senergytoimplementthemappingtoolcorrespondingtothatpriorityasproposedbythemodel.
ResultsofPGP
FromTable10itcanbeseenthatDlisatamaximumforl¼1andforl¼8,i.e.performanceactivitymapping(PAM)andleanvaluestreammapping(LVS).ThisobservationalsosupportstheresultobtainedfromthepreviousAHPmodel.Hence,thecaseorganisationmustfocusonimprovingitsproductivitybyfirstmappingtheprocessesusingPAMandsubsequentlyadoptingLVS.ContinuingwiththePGPmethodology,thecompletesequenceofVSMtoolapplicationwasfound.ThisisillustratedasaflowchartinFigure3.
TheoptimumvaluesforXk(k2I¼1)areX1¼0:09,X2¼1,X3¼0:45,X4¼1,X5¼1;X6¼0;X7¼0;X8¼0.Accordingtotheresult,themetricsstoppingsupplierprocess½½ðX6Þandshortingcustomerprocess(½½X7)havenoimpactontheoptimisationofproductivity.Itshowsthatonlysixoutoftheeightmetricscontributetothemaximisationofpriority1(P1).Further,threemetrics–partsperlabourhour(½½X2),linestoptime(½½X4)andchangeovertime(½½X8)–arethemostcriticalasfarasproductivityisconcernedandthetargetmustbetomaintainthematashighalevelaspossible.RefertoTable11foroptimumperformancevaluesofall29metrics.
InternationalJournalofProductionResearch
2249
9lD9479837593272421........00000001S.H16327320672757.........0R0000000À9V33333333211111111XOG........0000000008L33333333211111111XU........C0000000007I955551220010003XM........E0000000006333333332R11111111X/A........0000000005333333332D11111111XT........E0000000004S32558201031111XM........E0000000003R26666665240000002XRW........0000000002V76666667240000001XDM........0000000001D76666667240000001XW........L0000000000J76666667240000001XN........I0000000009L666677662103001100XRD........0000000008C47558741101003002XR........Q0000000007C65555159120000202XDM........0000000006V5535525100420010XM........R00000000053781471N10002103XC........L000000000446328251N02001013XIT........0000000003661877771C00140000XC........S000000000231R445555XC211140000S.........000000000191D448XL110140001Y.........0000000000F7177777777XED000050000.........00000000019S07787777XU510040000C.........000000000.jMFMMAbPMSOARVFAPCSPQDDSVPLVO1GLU1CIM1ER/0ADT9.E0SM1ERR0WVD0MD3W3.L0JN0ILR0DC2R1Q.0CD1MVM0RNC0LNI0TC6C8.S0RC0SDL0YFE0DSU5.C0.TP/GC1PPC0gSnisPuS0SsleTvD1elEeTcnS1aLmP5rP4.oT0freHpL1mPuTmK1.0itWpOecn.ca1ir1temmruoemlmfrb.fitearppTePODownloaded by [Columbia University] at 18:35 05 January 2013 Table10.Objectivefunction(row3)andconstraints(Rows4torow11)forP-quality.2250V.RameshandR.Kodali
Figure3.FlowchartforVSMtoolapplication.
ThefinalinferencefromiterationoneofthePGPmodelisthatPAMfollowedbyLVSmappingmustbeimplementedintheorganisation,withtheobjectiveofimprovingproductivity.EffortsmustbesustaineduntiltherequiredoptimumperformanceofthemetricsasgivenbyPGPisachieved.
4.Resultsandconclusion
Onapracticalfront,thenoveltyoftheproposeddecisionframeworkliesinitsabilitytosimultaneouslyconsiderboththecurrentstateandthefuturestateofasystemthroughaninnovativeformulationoftheintegratedAHP-PGPapproach.ThisallowstheframeworktoguidetheuserintheselectionofthebestsequenceoftheVSMtooltoeliminateallpossibleformsofwastewithintheshortesttimeframe.Additionally,thetheoreticalcontributionoftheapproachliesintheiterativePGPstrategywhichallowstheusertoaccuratelydeterminetheoptimumvaluesofeachperformancemetricthatmaximisesoverallperformance.Together,thedecisionframeworksuccessfullybridgesthegapidentifiedinthemethodsknownatpresentforselectingVSMtools.
Forthepresentmodel,AHPisusedtoselectthebestVSMtoolthatwillgivethehighestrateofimprovementforthecasestudy.Fortheconsideredcase,productivity(PRD)wasfoundtobeofthehighestimportanceand,hence,usingAHP,processactivitymapping(PAM)hasbeenidentifiedasthemostsuitabletooltoachieverapidimprovementsinproductivityontheshopfloorandtomaximisethereturnonthemappingeffort.
ThebestVSMtoolselectedviatheAHPmodelonlyguaranteesthequickestmethodforremovalofwasteinanorganisationdependingonthecurrentorganisationalpreferencesandgoals.Accordingtotheleanphilosophy,oncethetoolhasbeenappliedandtherelevantwaste(s)reduced,theprioritiesoftheorganisationshouldthenrapidlyshifttofocusonanotherPMand,hence,inthelongterm,focusonremovingallformsofwasteandbecomingtrulylean.Thisisthemantraforcontinuousimprovementasproposedbythemodel.
Hence,theoverallapproachsuggestedbythedecisionframeworkistouseAHPtokick-startvaluestreammappingtechniquesinthecaseorganisationandalsobuildmomentumforthewaste-removalprocess.Oncethathasbeenachieved,thebestsequenceofmappingtools,basedontheresultsofPGP,mustbeusedtosustaininterestinwasteidentificationandremovalandalsotomeettheobjectiveofkaizenorcontinuousimprovementinthelongterm.
Forthepresentcase,PAMshouldbesequentiallyfollowedbyLVS.OncetheperformancemetricsfollowingtheshopfloorrestructuringsuggestedbyPAMstabilise,effortsmustbedivertedtoimprovingtheplantusingthecurrentstate–futurestateVSMtechnique,asoriginallysuggestedbyToyota(LVS).Thetargetofthiseffortshouldbetoachieve100%ofthetargetedpartsperlabourhour(PLH),linestoptime(LST),equipmentdowntime(EDT)andchangeovertime(C/T),sincethesemetricshavethehighestimpactonproductivity,whichisourprimarygoal.Qualityisthenextonourchecklist;forthis,PGPsuggestsusingqualityfiltermapping(QFM)toachieveatleast50%oftargetedcustomersatisfaction(CUS).TheotherprioritiesfollowinsequenceandtheappropriatetoolasgivenbyPGPmaybeusedtoachievethem.Targetperformancemustbetoachieve100%ofthemisseddeliverycycles(MDC),employmentsecurity(EMS),employeeinvolvement(EMI),culture(CUL)andgovernance(GOV)metricsbecausethesehavethehighestimpactonmaximisingtheirrespectivePMs.
Inthepresentresearchpaper,thesolutiontotheproblemhasbeenmodelledasamulti-criteriadecision-making(MCDM)approach.SincedatainMCDMproblemsareimpreciseandchangeable(TriantaphyllouandSanchez1997),anaturalextensionofthepresentresearchistoincludesensitivityanalysis.AsDantzig(1963,p.32)stated:‘Sensitivityanalysisisafundamentalconceptintheeffectiveuseandimplementationofquantitativedecisionmodels,whosepurposeistoassessthestabilityofanoptimalsolutionunderchangesintheparameters.’Forthegivenproblem,asproposedbyTriantaphyllouetal.(2007),thiscanbecarriedouttostudytheimpactofchangesintheweightsassignedtothecriteriaandsub-criteriaontheselectionoftheVSMtool.Byknowingwhichdataismorecritical,thedecisionmakercanmoreeffectivelyfocustheirattentiononthemostcriticalpartsoftheproblem.Alternatively,sensitivityanalysiscanalsobeappliedinthedata-gatheringphasetocalculate,withhigheraccuracy,theweightsthataremorecriticalintheinterestofaconstrainedbudget.
Downloaded by [Columbia University] at 18:35 05 January 2013 InternationalJournalofProductionResearch2251
References
Anand,G.andKodali,R.,2008.Performancemeasurementsystemforleanmanufacturing:aperspectivefromSMEs.
InternationalJournalofGlobalisationandSmallBusiness,2(4),371–410.
Badri,M.A.,2001.AcombinedAHP-GPmodelforqualitycontrolsystems.InternationalJournalofProductionEconomics,
72(1),27–40.
Bhagwat,R.andSharma,M.K.,2009.AnapplicationoftheintegratedAHP-PGPmodelforperformancemeasurementof
supplychainmanagement.ProductionPlanningandControl,20(8),678–690.
Cebi,F.andBayraktar,D.,2003.Anintegratedapproachforsupplierselection.LogisticsInformationManagement,16(6),
395–400.
Chandra,S.andKodali,R.,1998.Justificationofjust-in-timemanufacturingsystemsforIndianindustries.Integrated
ManufacturingSystems,9(5),314–323.
Daum,J.H.andBretscher,P.,2004.Measuringperformanceinaknowledgeeconomy:linkingsubjectiveandobjective
measurementintoa‘vector-based’conceptforperformancemeasurement.FourthInternationalConferenceonTheoryandPracticeinPerformanceMeasurementandManagement,28–30July,Edinburgh.
Dantzig,G.B.,1963.Linearprogrammingandextensions.Princeton,NJ:PrincetonUniversityPress.Dennis,P.,2007.Leanproductionsimplified.NewYork:ProductivityPress.
Ghodsypour,S.H.andO’Brien,C.,2001.Thetotalcostoflogisticsinsupplierselection,underconditionsofmultiplesourcing,
multiplecriteriaandcapacityconstraint.InternationalJournalofProductionEconomics,73(1),15–27.
Hines,P.andRich,N.,1997.Thesevenvaluestreammappingtools.InternationalJournalofOperationsandandProduction
Management,17(1),46–.
Hines,P.,etal.,1998.Valuestreammanagement.InternationalJournalofLogisticsManagement,9(1),25–42.
KaizenInstitute,2010.KAIZENleanandgreen.Availablefrom:http://www.leanadvisors.com/index.php/what/green/
lean_and_green
Lev,B.,2001.Intangibles:management,measurement,andreporting.Washington,DC:BrookingsInstitutionPress.Liker,J.K.andMeier,D.,2006.TheToyotawayfieldbook.NewYork:McGraw-Hill.
Mahindhar,V.,2005.Designingtheleanenterpriseperformancemeasurementsystem.Boston,MA:MassachusettsInstituteof
Technology,62–67.
Melnyk,S.A.,etal.,2004.Metricsandperformancemeasurementinoperationsmanagement:dealingwiththemetricsmaze.
JournalofOperationsManagement,22(3),209–218.
Neely,A.,etal.,2005.Performancemeasurementsystemdesign:aliteraturereviewandresearchagenda.InternationalJournalof
OperationsandProductionManagement,25(12),1228–1263.
Ohno,T.,1988.Toyotaproductionsystem:beyondlarge-scaleproduction.Cambridge,MA:ProductivityPress.
Percin,S.,2006.AnapplicationoftheintegratedAHP-PGPmodelinsupplierselection.MeasuringBusinessExcellence,10(4),
34–49.
Radcliffe,L.L.andSchniederjans,M.J.,2003.Trustevaluation:anAHPandmulti-objectiveprogrammingapproach.
ManagementDecision,41(6),587–595.
Roger,N.,1987.JustificationofFMSwiththeanalyticalhierarchyprocess.JournalofManufacturing,7(3),175–182.Rother,M.,2010.Toyotakata.NewYork:McGraw-Hill.
Rother,M.andShook,J.,1999.Learningtosee.Boston,MA:LeanEnterpriseInstitute.
Satty,T.L.,1982.Prioritysettingincomplexproblems:lecturenotesineconomicsandmathematicalsystem.FifthInternational
ConferenceonMultipleCriteriaDecisionMaking,9–13August,Mons,Belgium.
Schniederjans,M.J.andGravin,T.,1997.Usingtheanalyticalhierarchyprocessandmulti-objectiveprogrammingforthe
selectionofcostdriversinactivity-basedcosting.EuropeanJournalofOperationalResearch,100(1),72–80.
Shingo,S.,1988.Non-stockproduction:theShingosystemforcontinuousimprovement.Cambridge,MA:ProductivityPress.Shingo,S.,19.AstudyoftheToyotaproductionsystemfromanindustrialengineeringviewpoint.Cambridge,MA:Productivity
Press.
Singh,R.K.,etal.,2006.Leantoolselectioninadiecastingunit:afuzzy-baseddecisionsupportheuristic.InternationalJournal
ofProductionResearch,44(7),1399–1429.
Thompson,P.andWallace,T.,1996.Redesigningproductionthroughteamworking:casestudiesfromtheVolvoTruck
Corporation.InternationalJournalofOperationsandProductionManagement,16(2),103–118.
TotalSystemsDevelopmentInc,2001.Leanmanufacturing:aplantfloorguide.Dearborn,MI:SocietyofManufacturing
Engineers.
Triantaphyllou,E.andSanchez,A.,1997.Asensitivityanalysisapproachforsomedeterministicmulti-criteriadecisionmaking
Methods.DecisionSciences,28(1),151–194.
Trochim,W.M.K.,2006.Likertscaling.Availablefrom:http://www.socialresearchmethods.net/kb/scallik.phpWikipedia,2010.Corporategovernance,22May.
Womack,J.,etal.,1991.Themachinethatchangedtheworld:thestoryofleanproduction.NewYork:HarperPerennial.
Downloaded by [Columbia University] at 18:35 05 January 2013
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- dfix.cn 版权所有 湘ICP备2024080961号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务