您好,欢迎来到抵帆知识网。
搜索
您的当前位置:首页中考圆的难题题型

中考圆的难题题型

来源:抵帆知识网
中考圆的常见题型

1、如图,EB为半圆O的直径,点A在EB的延长线上,

AD切半圆O于点D,BC⊥AD于点C,AB=2,半圆O的半径为2,则BC的长为( B )

E O D C B A A.2 B.1 C.1.5 D.0.5

2、如图(2),在

Rt△ABC中,

C O B D 图(2)

A C90°,AC6,BC8,⊙O为△ABC的内切

圆,点D是斜边AB的中点,则tanODA( ) A.

32 B.

33 C.3 D.2

3、如图,两同心圆的圆心为O,大圆的弦AB切小圆于P,两圆的半径分别为6,3,则图中阴影部分的面积是(C ) A.9

3A P (第3题图) O B B.63 C.933 D.632

4、如图,点A,B,C在

O上,A50°, O

B

(第4题图)

A

则BOC的度数为( ) A.130° C.65°

B.50°

D.100°

C

O 第5题图 5、一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ) A.0.4米 米

6、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到

A B.0.5米 C.0.8米 D.1

点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.

(1)求证:AB=AC;

E C O D B (2)若⊙O的半径为4,∠BAC=60o,求DE的长. (1)证明:连接AD ∵AB是⊙O的直径 ∴∠ADB=90° 又∵BD=CD

∴AB=AC。

(2)解:∵∠BAC=60°,由(1)知AB=AC ∴△ABC是等边三角形

在Rt△BAD中,∠BAD=30°,AB=8 ∴BD=4,即DC=4 又∵DE⊥AC,

∴DE=DC×sinC=4×sin60°=4323 27、如图,PA为⊙O的切线,A为切点.直线PO与⊙O交于B、C两点,P30°,连接AO、AB、AC.求证:△ACB≌△APO. 证明:又

······················· 1PA为O的切线,PAO90°.

分 分 分 分 分 分 分

C

O B

P

A

(第7题图)

······································ 2P30°,AOP60°, ·

1CAOP30°, ················································· 3

2·························································· 4CP, ·

·························································· 5ACAP. ·又BC为

O直径,CABPAO90°, ························· 6

. ·········································· 7△ACB≌△APO(ASA)

(注:其它方法按步骤得分.)

8、如图,AB是半圆O的直径,C为半圆上一点,N是线段 BC上一点(不与B﹑C重合),过N作AB的垂线交AB于M,

交AC的延长线于E,过C点作半圆O的切线交EM于F. ⑴求证:△ACO∽△NCF; ⑵若NC∶CF=3∶2,求sinB 的值.

(1)证明:∵AB为⊙O直径 ∴∠ACB=90° ∴EM⊥AB

∴∠A=∠CNF=∠MNB=90°-∠B ……………………………………(1分)

又∴CF为⊙O切线 ∴∠OCF=90°

∴∠ACO=∠NCF=90°-∠OCB ………………………………………(2分)

∴△ACO∽△NCF ……………………………………………………(4分)

A C

E

F N O M (第8题图)

B

(2)由△ACO∽△NCF得:

ACCN3 COCF2 …………………………………(5分)

Rt△ABC

在sinB=ACABACAC3 2AO2CO4 ………………………(7分)

C

9、已知:如图,AB是⊙O的直径,AD是弦,OC

直AD于F交⊙O于E, 连结DE、BE,且∠C=∠BED. (1)求证:AC是⊙O的切线; (2)若OA=10,AD=16,求AC的长.

(1)证明:∵∠BED=∠BAD,∠C=∠BED

B

D F O E 垂

A

∴∠BAD=∠C ······························· 1分 ∵OC⊥AD于点F

∴∠BAD+∠AOC=90o ····················· 2分

∴∠C+∠AOC=90o ∴∠OAC=90o ∴OA⊥AC

∴AC是⊙O的切线. ······················ 4分

(2)∵OC⊥AD于点F,∴AF=1AD=8 ·············· 5分

2在Rt△OAF中,OF=

OA2AF2=6 ··············· 6分

∵∠AOF=∠AOC,∠OAF=∠C

∴△OAF∽△OCA ··································· 7分 ∴OAOF

OCOA即

OA210050OC=OF63 ································· 8分

OC2OA240. ········· 103在Rt△OAC中,AC=

10、如图,在平面直角坐标系内,点A的坐标为(3,,0)O为原点,经过A、O两点作半径为5的⊙C,交y轴的负半轴2A O C B y D x 于点B.

(1)求B点的坐标;

(2)过B点作⊙C的切线交x轴于点D,求直线BD析式. (1)

AOB90°

的解(第10题)

······················· 1AB是直径,且AB5

在Rt△AOB中,由勾股定理可得 ·················· 3BOAB2AO252324 ·

······················· 44) ·B点的坐标为(0,(2)

BD是⊙C的切线,CB是⊙C的半径

即ABD90° BDAB,DABADB90°

又BDOOBD90°

···························································· 5DABDBO ·

AOBBOD90°

分 分

··························································· 6△ABO∽△BDO ·

OAOBOB24216OD OBODOA33160 ······················································· 7D的坐标为,3分

设直线BD的解析式为ykxb(k0,k、b为常数)

16kb0则有 ···························································· 83b43k···································································· 94 ·b4直线BD的解析式为y分

分 分

3········································ 10x4 ·4C 11、如图,AB是于点E,

O的直径,CD是弦,CDAB(1)求证:△ACE∽△CBE;

A

O E B

(2)若AB8,设OEx(0x4),CE2y,请求出y关于x的函数解析式; (3)探究:当x为何值时,tanD3. 3D (1)证明:AB为O直径,ACB90°即ACEBCE90°

又CDAB,AACE90°

································ 3AECB,Rt△ACE∽Rt△CBE ·(2)

分

△ACE∽△CBE

AECE即CE2AEBE(AOOE)(OBOE) CEEBy(4x)(4x)16x2 ··············································· 6分

(3)解法一:

CE3AE3tanD3即tanA333

CE2116x21则2即解得x2或x4(舍去) AE3(4x)233 ········································· 103故当x2时,tanD解法二:即

tanD分

3BEBE4x3DECE16x2 34x316x2 1(4x)2316x2解得x2或x4(舍去)

3 ········································· 103故当x2时,tanD分

12、如图,AB是⊙O的直径,点C在AB的延长线上,CD

切⊙O于点D,过点D作DF⊥AB于点E,交⊙O于点F,已知OE=1cm,DF=4cm. (1)求⊙O的半径; (2)求切线CD的长

A O D E B F C

13、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连

A 接AC、BC,若∠BAC=30o,CD=6cm. (1)求∠BCD的度数;(4分) (2)求⊙O的直径.(6分)

14、如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连结DB,且AD=DB.

(1)求证:DB为⊙O的切线.

(2)若AD=1,PB=BO,求弦AC的长.

O C E B D

(1)证明: 连结

OD ………………………………………………………1 分 ∵ PA 为⊙O切线 ∴ ∠OAD = 90°………………………………………2 分 ∵ OA=OB,DA=DB,DO=DO, ∴ΔOAD≌ΔOBD …………………3分

∴ ∠OBD=∠OAD = 90°, ∴PA为⊙O的切线…………………4 分

(2)解:在RtΔOAP中, ∵ PB=OB=OA ∴ ∠OPA=30°………………5 分

∴ ∠POA=60°=2∠C ,

∴PD=2BD=2DA=2……………………………6 分 ∴ ∠OPA=∠C=30°…………………………………7 分 ∴ AC=AP=3…………………………………………8 分

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- dfix.cn 版权所有 湘ICP备2024080961号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务