镇巴县第二中学校2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是( ) A.10个 B.15个 C.16个 D.18个
2. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A.y=sinx
B.y=1g2x
C.y=lnx
D.y=﹣x3
【考点】函数单调性的判断与证明;函数奇偶性的判断. 【专题】函数的性质及应用.
【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.
3. 过点(0,﹣2)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是( ) A.
B.
C.
D.
4. 已知f(x)=x3﹣6x2+9x﹣abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论: ①f(0)f(1)>0; ②f(0)f(1)<0; ③f(0)f(3)>0; ④f(0)f(3)<0.
其中正确结论的序号是( ) A.①③
B.①④
C.②③
D.②④
4
的展开式中,含x的项的系数是( )
5. 在二项式
A.﹣10 B.10 C.﹣5
6. 阅读如图所示的程序框图,运行相应的程序,若输出的D.5
的值等于126,则判断框中的①可以是( )
第 1 页,共 16 页
精选高中模拟试卷
A.i>4? B.i>5? C.i>6? D.i>7?
7. 一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( ) A.6 B.3 C.1 D.2
8. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布. A.
B.
C.
D.
9. 全称命题:∀x∈R,x2>0的否定是( ) A.∀x∈R,x2≤0
B.∃x∈R,x2>0
C.∃x∈R,x2<0
D.∃x∈R,x2≤0
10.△ABC的内角A、B、C的对边分别为a、b、c.已知a=A.
B.
C.2
D.3
,c=2,cosA=,则b=( )
11.设F1,F2是双曲线于( ) A.
B.
C.24
D.48
的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等
12.已知长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为( ) A.60°
B.90°
C.45°
D.以上都不正确
二、填空题
第 2 页,共 16 页
精选高中模拟试卷
13.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记则S的最小值是 .
14.在△ABC中,若角A为锐角,且
15.1785与840的最大约数为 .
2,
=(2,3),=(3,m),则实数m的取值范围是 .
16.已知关于的不等式xaxb0的解集为(1,2),则关于的不等式bxax10的解集 为___________. 17.下列命题:
①函数y=sinx和y=tanx在第一象限都是增函数;
②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点; ③数列{an}为等差数列,设数列{an}的前n项和为Sn,S10>0,S11<0,Sn最大值为S5; ④在△ABC中,A>B的充要条件是cos2A<cos2B;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强. 其中正确命题的序号是 (把所有正确命题的序号都写上).
2yxy22xy3x218.已知x,y满足xy4,则的取值范围为____________. 2xx1三、解答题
19.(本小题满分12分)某市拟定2016年城市建设A,B,C三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互,该公司对A,B,C三项重点工程竞标成功的概率分别为a,b,
113(ab),已知三项工程都竞标成功的概率为,至少有一项工程竞标成功的概率为. 4244(1)求a与b的值;
(2)公司准备对该公司参加A,B,C三个项目的竞标团队进行奖励,A项目竞标成功奖励2万元,B项目竞标成功奖励4万元,C项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.
【命题意图】本题考查相互事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.
第 3 页,共 16 页
精选高中模拟试卷
20.已知和均为给定的大于1的自然数,设集合
,,,...,.
,其中
、
,集合
..。
(1)当(2)设、.证明:若
,..。.
,,
,,...,;
..。
,,
时,用列举法表示集合
,,,...,
,则
21.已知△ABC的顶点A(3,2),∠C的平分线CD所在直线方程为y﹣1=0,AC边上的高BH所在直线方程为4x+2y﹣9=0.
(1)求顶点C的坐标; (2)求△ABC的面积.
第 4 页,共 16 页
精选高中模拟试卷
22.(本小题满分10分) 已知函数f(x)|xa||x2|.
(1)当a3时,求不等式f(x)3的解集; (2)若f(x)|x4|的解集包含[1,2],求的取值范围.
23.设M是焦距为2的椭圆E:
+
=1(a>b>0)上一点,A、B是椭圆E的左、右顶点,直线.
MA与MB的斜率分别为k1,k2,且k1k2=﹣(1)求椭圆E的方程; (2)已知椭圆E:
+
=1(a>b>0)上点N(x0,y0)处切线方程为
+=1,若P
是直线x=2上任意一点,从P向椭圆E作切线,切点分别为C、D,求证直线CD恒过定点,并求出该定点坐标.
24.若数列{an}的前n项和为Sn,点(an,Sn)在y=(Ⅰ)求数列{an}的通项公式; (Ⅱ)若c1=0,且对任意正整数n都有
.
,求证:对任意正整数n≥2,总有x的图象上(n∈N*),
第 5 页,共 16 页
精选高中模拟试卷
第 6 页,共 16 页
精选高中模拟试卷
镇巴县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参) 一、选择题
1. 【答案】B
*
【解析】解:a※b=12,a、b∈N,
若a和b一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a,b)有4个;
若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有2×6﹣1=11个,
所以满足条件的个数为4+11=15个. 故选B
2. 【答案】B
【解析】解:根据y=sinx图象知该函数在(0,+∞)不具有单调性;
y=lg2x=xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B正确; 根据y=lnx的图象,该函数非奇非偶;
根据单调性定义知y=﹣x3在(0,+∞)上单调递减. 故选B.
【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义.
3. 【答案】A
【解析】解:若直线斜率不存在,此时x=0与圆有交点, 直线斜率存在,设为k,则过P的直线方程为y=kx﹣2, 即kx﹣y﹣2=0,
22
若过点(0,﹣2)的直线l与圆x+y=1有公共点,
则圆心到直线的距离d≤1, 即解得k≤﹣即
≤α≤
≤1,即k2﹣3≥0, 或k≥且α≠≤α≤
, , ,
综上所述,
故选:A.
4. 【答案】C
第 7 页,共 16 页
精选高中模拟试卷
【解析】解:求导函数可得f′(x)=3x﹣12x+9=3(x﹣1)(x﹣3),
2
∵a<b<c,且f(a)=f(b)=f(c)=0. ∴a<1<b<3<c,
32
设f(x)=(x﹣a)(x﹣b)(x﹣c)=x﹣(a+b+c)x+(ab+ac+bc)x﹣abc, 32
∵f(x)=x﹣6x+9x﹣abc,
∴a+b+c=6,ab+ac+bc=9, ∴b+c=6﹣a, ∴bc=9﹣a(6﹣a)<∴a﹣4a<0,
2
,
∴0<a<4,
∴0<a<1<b<3<c,
∴f(0)<0,f(1)>0,f(3)<0, ∴f(0)f(1)<0,f(0)f(3)>0. 故选:C.
5. 【答案】B 【解析】解:对于对于10﹣3r=4, ∴r=2, 故选项为B
,
422
则x的项的系数是C5(﹣1)=10
【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.
6. 【答案】 C
【解析】解:模拟执行程序框图,可得 S=0,i=1 S=2,i=2
不满足条件,S=2+4=6,i=3 不满足条件,S=6+8=14,i=4 不满足条件,S=14+16=30,i=5 不满足条件,S=30+32=62,i=6 不满足条件,S=62+=126,i=7
第 8 页,共 16 页
精选高中模拟试卷
由题意,此时应该满足条件,退出循环,输出S的值为126, 故判断框中的①可以是i>6? 故选:C.
【点评】本小题主要考查循环结构、数列等基础知识.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查.
7. 【答案】A 【解析】
试题分析:根据与相邻的数是1,4,3,而与相邻的数有1,2,5,所以1,3,5是相邻的数,故“?”表示的数是,故选A.
考点:几何体的结构特征. 8. 【答案】D
【解析】解:设从第2天起每天比前一天多织d尺布m 则由题意知解得d=
.
,
故选:D.
【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.
9. 【答案】D
2
【解析】解:命题:∀x∈R,x>0的否定是:
2
∃x∈R,x≤0.
故选D.
【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.
10.【答案】D
【解析】解:∵a=
,c=2,cosA=,
=
2
,整理可得:3b﹣8b﹣3=0,
∴由余弦定理可得:cosA==∴解得:b=3或﹣(舍去). 故选:D.
第 9 页,共 16 页
精选高中模拟试卷
11.【答案】C
【解析】解:F1(﹣5,0),F2(5,0),|F1F2|=10, ∵3|PF1|=4|PF2|,∴设|PF2|=x,则由双曲线的性质知∴|PF1|=8,|PF2|=6, ∴∠F1PF2=90°, ∴△PF1F2的面积=故选C.
【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
12.【答案】B
【解析】解:∵E是BB1的中点且AA1=2,AB=BC=1, ∴∠AEA1=90°, ∴A1D1⊥AE, 故选B
又在长方体ABCD﹣A1B1C1D1中,AD⊥平面ABB1A1, ∴AE⊥平面A1ED1,
. ,解得x=6.
,
【点评】本题考查线面角的求法,根据直线与平面所成角必须是该直线与其在这个平面内的射影所成的锐角,还有两个特殊角,而立体几何中求角的方法有两种,几何法和向量法,几何法的思路是:作、证、指、求,向量法则是建立适当的坐标系,选取合适的向量,求两个向量的夹角.
二、填空题
13.【答案】
【解析】解:设剪成的小正三角形的边长为x,则:S=令3﹣x=t,t∈(2,3), ∴S=立;
=
=
,当且仅当t=即t=2
时等号成
=
,(0<x<1)
.
第 10 页,共 16 页
精选高中模拟试卷
故答案为:
14.【答案】
.
.
【解析】解:由于角A为锐角, ∴
且
不共线,
.
.
.
∴6+3m>0且2m≠9,解得m>﹣2且m∴实数m的取值范围是故答案为:
【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题.
15.【答案】 105 .
【解析】解:1785=840×2+105,840=105×8+0. ∴840与1785的最大公约数是105. 故答案为105
16.【答案】(,)(1,) 【
解
析
】
12考
点:一元二次不等式的解法. 17.【答案】 ②③④⑤
第 11 页,共 16 页
精选高中模拟试卷
【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=
,
,,但是
,因此不是单调递增函数;
②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确; ③数列{an}为等差数列,设数列{an}的前n项和为Sn,S10>0,S11<0,∴
=11a6<0,
∴a5+a6>0,a6<0,∴a5>0.因此Sn最大值为S5,正确;
④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确. 其中正确命题的序号是 ②③④⑤.
【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.
18.【答案】2,6 【解析】
=5(a6+a5)>0,
考点:简单的线性规划.
【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数
第 12 页,共 16 页
精选高中模拟试卷
22的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1)xy表示点
x,y与原点0,0的距离;(2)xaybyb22表示点x,y与点a,b间的距离;(3)
y可表示点xx,y与0,0点连线的斜率;(4)xa表示点x,y与点a,b连线的斜率.
三、解答题
19.【答案】
111aab4224【解析】(1)由题意,得,因为ab,解得.…………………4分
1131(1a)(1)(1b)b344(Ⅱ)由题意,令竞标团队获得奖励金额为随机变量X, 则X的值可以为0,2,4,6,8,10,12.…………5分
12311231;P(X2);
2344234411311211135P(X4); P(X6);
23482342342412111111P(X8); P(X10);
23412234241111P(X12).…………………9分
23424所以X的分布列为:
8 10 12 X 0 2 4 6 1115111 P 44824122424111511123456于是,E(X)0123.……………12分
4482412242412而P(X0)20.【答案】
第 13 页,共 16 页
精选高中模拟试卷
【解析】21.【答案】
=﹣2.
【解析】解:(1)由高BH所在直线方程为4x+2y﹣9=0,∴∵直线AC⊥BH,∴kACkBH=﹣1. ∴
,
,
, ,即
. . ,
.
直线AC的方程为联立
∴点C的坐标C(1,1). (2)
∴直线BC的方程为联立
,
点B到直线AC:x﹣2y+1=0的距离为又∴
【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题.
22.【答案】(1){x|x1或x8};(2)[3,0].
第 14 页,共 16 页
精选高中模拟试卷
【解析】
试
2x5,x22x3,当x2时,由f(x)3得2x53,解得x1; 题解析:(1)当a3时,f(x)1,2x5,x3当2x3时,f(x)3,无解;当x3时,由f(x)3得2x53,解得x8,∴f(x)3的解集为
{x|x1或x8}.
(2)f(x)|x4||x4||x2||xa|,当x[1,2]时,|xa||x4|4xx22, ∴2ax2a,有条件得2a1且2a2,即3a0,故满足条件的的取值范围为[3,0]. 考点:1、绝对值不等式的解法;2、不等式恒成立问题. 23.【答案】
【解析】(1)解:设A(﹣a,0),B(a,0),M(m,n),则
22即n=b•
+=1,
,
,即
=﹣
•,
=﹣
,
由k1k2=﹣即有
22222
即为a=2b,又c=a﹣b=1, 22
解得a=2,b=1.
即有椭圆E的方程为+y2=1;
(2)证明:设点P(2,t),切点C(x1,y1),D(x2,y2), 则两切线方程PC,PD分别为:
+y1y=1,
+y2y=1, +y1y=1,
+y2y=1,
由于P点在切线PC,PD上,故P(2,t)满足得:x1+y1t=1,x2+y2t=1,
故C(x1,y1),D(x2,y2)均满足方程x+ty=1,
第 15 页,共 16 页
精选高中模拟试卷
即x+ty=1为CD的直线方程. 令y=0,则x=1, 故CD过定点(1,0).
【点评】本题主要考查椭圆的简单性质、直线与椭圆的位置关系,导数的几何意义等基本知识,考查运算能力和综合解题能力.解题时要注意运算能力的培养.
24.【答案】
【解析】(I)解:∵点(an,Sn)在y=∴当n≥2时,∴
当n=1时,∴
=,化为
,解得a1=.
=
.
=2n+1,
,
,
,
x的图象上(n∈N*),
(2)证明:对任意正整数n都有
∴cn=(cn﹣cn﹣1)+(cn﹣1﹣cn﹣2)+…+(c2﹣c1)+c1 =(2n﹣1)+(2n﹣3)+…+3 =
∴当n≥2时,∴
=,
又∴
=.
.
==
=(n+1)(n﹣1).
=
+…+
.
=
<
【点评】本题考查了等比数列的通项公式与等差数列的前n项和公式、“累加求和”、“裂项求和”、对数的运算性质、“放缩法”、递推式,考查了推理能力与计算能力,属于中档题.
第 16 页,共 16 页
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- dfix.cn 版权所有 湘ICP备2024080961号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务