CatSwarmOptimizationasAppliedtoTime-ModulatedConcentricCircularAntennaArray:AnalysisandComparisonWithOtherStochasticOptimizationMethods
GopiRam,DurbadalMandal,RajibKar,andS.P.Ghoshal
Abstract—Inthiscommunication,a9-ringtime-modulatedconcentriccircularantennaarray(TMCCAA)withisotropicelementshasbeenstud-iedbasedonanevolutionaryoptimizationalgorithmcalledcatswarmoptimization(CSO)forthereductionofsidelobelevel(SLL)andimprove-mentintheDirectivity,simultaneously.ThecomparativecasestudiesasCase-1andCase-2aremadewiththreecontrolparameterslikeinterele-mentspacinginrings,interringradii,andtheswitching“ON”timesofringswiththehelpofsamealgorithm.ExperimentalresultsshowaconsiderableSLLreductionwithrespecttotheuniformlyexcitedcase.ThenumericalresultsshowCase-2outperformsCase-1withrespecttoSLLandDirectivity.Apartfromthis,thepowersradiatedatthecenter/fundamentalfrequencyandthefirsttwosidebandfrequencies,anddynamicefficiencyhavebeencomputed.Ithasbeenobservedthatasthesidebandfrequencyincreases,boththepowersradiatedbyharmonicfrequenciesandsidebandlevels(SBLs)decrease.
IndexTerms—Catswarmoptimization(CSO),concentriccirculararrays,FNBW,radio-frequency(RF)switch,sidelobelevel(SLL),timemodulation.
evolutionaryoptimizationalgorithmstoelectromagneticshasenablednewsolutionandapplicationthatwasnotobtainablebyearliertechniques.
Differentevolutionaryalgorithms,geneticalgorithm(GA)[5]andparticleswarmoptimization(PSO)[6],[7],differentialevolution(DE)[8],[9]havebeenusedintheprocessoflowsidelobearraypatternsynthesisofTMCCAA.Inthiswork,forsimultaneousreductionofSLLaswellasimprovementinDirectivityoftheuniformlyexcitedTMCCAA[8],CSO[16],[17]isapplied.ThisCSOtechniquepro-ceedsbyoptimizingswitching“ON”timeweightofeveryringinthearray;alltheelementsintheringareuniformlyexcitedforthesame“ON”timeweightofthering.HighspeedandperiodicRFswitchisusedfortheswitchingpurpose.Duetotheaddi-tionaldegreeoffreedomastime,theSLLcanbefurtherreducedascomparedtothepublishedresultsin[5]and[8],whilekeep-inguniformamplitudeexcitations.Thestatisticalanalysisandt-test[18]havebeendonetoprovethesuperioroptimizationperformanceofCSO.
II.DESIGNEQUATIONS
Fig.1showsthegeneralconfigurationofCCAAwithPconcentriccircularrings,wherethepth(p=1,2,...,P)ringhasaradiusrpandthecorrespondingnumberofelementsintheringisNp.
Inthetimemodulation,eachringofCCAAiscontrolledbyahigh-speedperiodicRFswitchUp(t)[1].Suppose,thearrayoperatesattheoperatingfrequencyf0(Hz)andT0isthetimeperiodoftheoperatingfrequency.
Time-modulationperiodofthemodulatingswitchUp(t)isTprf;hence,time-modulationfrequencyfprf=1/Tprf.Generally,thetime-modulationfrequencyfprfismuchlowerthantheoperatingfre-quencyf0.ItmeansthatTprf>T0[1].Operatingfrequencyf0andtime-modulationfrequencyfprfareindependentofeachother.Now,instatedofexcitingeachringcontinuously,eachringisturned“ON”forthefixedtimedurationofτpwithapulserepetitionperiodTprfislyingintherangeτp≤Tprf>T0.DuetoRFswitchUp(t),theantennawillnotonlyradiateattheoperatingfrequency(f0)butalsowillradiateatdifferentsidebandharmonicsofmodulatingfrequency(fprf).SidebandharmonicsoftheradiationpatternarenotbecauseofoperatingfrequencyofthesignalbutduetotheperiodicswitchUp(t).Switch-ontimeofeachringofTMCCAAisτp(0≤τp≤Tprf).ThefarfieldofTMCCAAisobtainedasfollows:AF(θ,t)
⎫⎧
NpP⎬⎨j2πf0t
1+IpUp(t)exp[jkrpsinθcos(φ−φpi)]=e
⎭⎩p=1i=1
(1)
whereIp(Ip=1,throughoutthisstudy)istheexcitationamplitude
ofanelementonthepthcircularring;k=2π/λ;λbeingthesig-nalwavelength.θandφsymbolizethezenithanglefromthepositivez-axisandtheazimuthanglefromthepositivex-axistotheorthogonalprojectionoftheobservationpoint,respectively.Itmaybenotedthatiftheazimuthangleisassumedtobe0◦,i.e.,φ=00,(1)maybewrit-tenasanaperiodicfunctionofθwithaperiodofπradian.Theangleφpiistheelement-to-elementangularseparationmeasuredfromthepositivex-axis.Theelementsineachringareassumedtobeuniformlydistributed
i−1
(2)φpi=2π;p=1,...,P;i=1,...,Np.
Np
I.INTRODUCTION
ShanksandBickmore[1],Kummeretal.[2],andLewisandEvins[3]haveproposedtime-modulationtechniquebyprovidingradio-frequency(RF)switchingofantennaelementswith“time”asanextracontrolparametersoastoprovideanadditionaldegreeoffree-domtoimprovetheoverallradiationcharacteristicsoftime-modulatedantennaarrays(TMAs).
ManyrecentstudiesonTMAshavebeenfocusedontwomaintracks:1)thesynthesisofdesiredpatternatthecenterfrequencyandthejointminimizationofthelevelsoftheundesiredharmonicsgen-eratedbyON–OFFcommutationoftheswitches[4]–[9];and2)theexploitationofthesidebandradiationsforthedesignofmultifunc-tionalormultibeamantennaarrays[10]–[15].Dealingwiththefirstproblem,thepresentworkhasbeenproposedwiththeoptimizationofDirectivityandsidelobelevel(SLL)ofTMCCAAusinganovelevolutionaryalgorithmcatswarmoptimization(CSO)inthefieldofelectromagnetics.
TheprimarydisadvantageofTMAispresenceofsidebandsatharmonicfrequencies[1].Theseharmonicsaregenerallyunwantedastheywasteenergyandmaycauseinterferenceinotherpartsofradiospectrum[4]–[15].Toovercomethisdrawback,manyswitch-ingschemeshavebeenintroducedtosuppressthesesignalsbymeansofsuppressingthemaximumlevelsofsidebands.Theuseof
ManuscriptreceivedSeptember19,2014;revisedFebruary21,2015;acceptedJune09,2015.DateofpublicationJune11,2015;dateofcurrentversionSeptember01,2015.ThisworkwassupportedbytheDepartmentofScienceandTechnology,GovernmentofIndiaunderProjectSB/EMEQ-319/2013.
G.Ram,D.Mandal,andR.KararewiththeElectronicsandcommunicationDepartment,NationalInstituteofTechnology,Durgapur713209,India(e-mail:gopi203hardel@gmail.com).
S.P.GhoshaliswiththeElectricalEngineeringDepartment,NationalInstituteofTechnology,Durgapur713209,India(e-mail:spghoshalnitdgp@gmail.com).
Colorversionsofoneormoreofthefiguresinthiscommunicationareavailableonlineathttp://ieeexplore.ieee.org.
DigitalObjectIdentifier10.1109/TAP.2015.2444439
0018-926X©2015IEEE.Personaluseispermitted,butrepublication/redistributionrequiresIEEEpermission.
Seehttp://www.ieee.org/publications_standards/publications/rights/index.htmlformoreinformation.
IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.63,NO.9,SEPTEMBER201181
Fig.1.Concentriccircularantennaarray(CCAA).
Theperiodicswitch“ON–OFF”functionUp(t)intimedomainas
representedin(1)canbedecomposedintoFourierseriesinfrequencydomain,givenby
U∞p(t)=
ampej2πmfprft
(3)
m=−∞
where
amp=
Ipτp
sinc(mfprfτp)e−jπmfprfτpTprf
.(4)
Equation(4)showscurrentexcitationvalueforthemthmultiple
offprf.From(1),(3),and(4),thetotalfar-fieldarrayfactorcanbeexpandedintoFourierseriesandgivenby
⎧⎫
AF(θ,t)=∞⎨1+
P
Npa⎬mpexp[jkrpsinθcos(φ−φpi)]m=−∞
⎩p=1i=1
⎭
ej2π(f0+m.fprf)t.
(5)
Thefarfieldof(5)containsinfinitenumberofm.fprfcom-ponents,wherem=0,±1,±2,...,±∞.Them.fprfcomponent
arrayfactorisgivenby
AFm(θ,t)=ej2π(f0+m.fprf)t
⎧×⎨P⎩1+
Np⎫
ajkr⎬mpexp[psinθcos(φ−φpi)]p=1
i=1
⎭.(6)
From(6),onecanexpressthefollowingarrayfactorsAF0(θ,t),AF1(θ,t),andAF2(θ,t)fortheoperatingfrequency,thefirstandthesecondpositivesidebandfrequencies,respectively,whichcanbeusedtosynthesizethedesiredradiationpatternatf0,f0+fprf,andf0+2fprf.
Similartotime-modulatedlineararrays[4],theDirectivityofTMCCAAisgivenby
DTMCCAA=
∞|AF0(θ0,φ0)|22ππ
(7)
41
π
m=−∞
00
|AFm(θ,φ)|2sinθdθdφwhereDTMCCAAistheDirectivityofTMCCAA;θ0denotesthe
directioninwhichAF(θ,φ)hasmaximumvalue;andAFm(θ,φ)denotestheradiationpatternatthemthordersidebandfrequencym.fprf.
ThepowerradiatedbyTMCCAA,Pm(m=0,±1,±2,...,±∞)isgivenby
2π
π
P
∞m=
m(θ,φ)|2sinθdθdφ.
(8)
m=−∞,
00
|AFDynamicefficiency(ηd)isdefinedastheratioofpowerradiated
bythearrayatthecenterfrequency(m=0)andthesumofpowersradiatedbythearrayatthecenterfrequencyaswellasthesidebandharmonicfrequencies.
Themainobjectiveinthiscommunicationistooptimizethreedifferentcontrolparameters;thefirstoptimizingparameteristheswitchingtimesequenceτpofeachring.Thesecondoptimizingparameterisradiusofeachring(r,andfor1,ther2,...interring,rp).spacingThereshouldas0.5λbesomeconstraintsasr1≥0.5λ≤rp<λ.Thethirdoptimizingparameterisinterelementspacingineachring,andthisparameteralsofollowstheminimumconstraintof0.5λ≤dp<λ.AnadditionalseparationofΔpisaddedsothatrp=rp−1+λ/2+Δp;where
0≤Δp≤λ.
(9)
Theobjective/fitnessisexpressedasfollows:
fg(τP,rp,dp)=w11∗SLLg
fitnessmax(τP,rp,dp)|f0
+w22∗SBLgmax(τP,rp,dp)|f0+fprf+w33∗SBLgmax(τP,rp,dp)|f0+2fprf+w44∗(1/DTMCCA_max)
(10)
wheregdenotesthegthiterationcycle;SLLmax|fSLLatthecenterfrequency;SBL0isthe
maximum|max|f0+fprfandSBLmaxf0+2fprfarethemaximumsidebandlevels(SBLs)atthefirstandsecondsidebandfrequencies,respectively,andw11,w22,w33,w44aretheweightingfactorsofvarioustermstoemphasizethedifferentcontributionstothefitnessfunction.DTMCCA_maxisthemaximumDirectivityoftheTMCCAA.
III.NUMERICALRESULTS
ThissectiongivestheexperimentalresultsforvariousTMCCAAdesignsobtainedbyRGA,PSO,DE,andCSOalgorithms.Thiscom-municationadoptstheevolutionaryoptimizationalgorithmscalledCSO[16],[17].DirectivityiscalculatednumericallybySimpson’s1/3rule.Velocityofelectromagneticwaveinthefreespaceisgivenbyc=3.0×108m/sec;operatingfrequencyf0=3.0GHz;time-modulationfrequencyfprf=1/Tprf.Time-modulationperiodofthemodulatingswitchUi(t)isTprf=1μs,then,onecancalculatetime-modulationfrequencyfprf=1/Tprf.CurrentexcitationweightIpiskeptuniform(Ip=1).Fortheuniform9-ringCCAAof279ele-mentswithringradiusrp=p.λ/2andinterelementspacingineachringdp=λ/2.SLL,FNBW,andDirectivityare−17.4dB,14.76◦,and29.35dB,respectively.Tokeepdp≥λ/2andallowsufficientinterelementspacing,thedigitstotherightofthedecimalpointaredropped.TableIshowsoptimizedswitchingtimesequence,ringradii,andoptimalnonuniforminterelementspacingobtainedbyCSO.
A.Case-1:OptimizingOnlySwitchingTimeSequenceofEachRingTableIIshowsthatforCase-1,SLLandDirectivityobtainedbyCSOaremuchbetterthanthoseobtainedbyRGA,PSO,DE,uniformCCAA,andthoseobtainedin[8],withalittleincreaseinFNBW.
4182IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.63,NO.9,SEPTEMBER2015
TABLEI
OPTIMIZINGSWITCHINGTIMESEQUENCE,RINGRADII,ANDOPTIMALNONUNIFORMINTERELEMENTSPACINGBYCSO
TABLEII
OPTIMALSLL,SBL1,SBL2,FNBW,P0,P1,P2,DIRECTIVITY,DYNAMICEFFICIENCYOFTMCCAAOBTAINEDBYRGA,PSO,DE,
ANDCSOALGORITHMS
T-TEST
TABLEIII
VALUESANDP-VALUESOBTAINEDFORCOMPARISONOFCSO
WITHOTHERALGORITHMSFORCASE-2
Fig.2.Radiationpatterns(dB)obtainedbyCSOforCase1.
Fig.3.Radiationpatterns(dB)obtainedbyCSOforCase-2.
B.Case-2:OptimizingSwitchingTimeSequence,RingRadii,andOptimalNonuniformInterelementSpacing
TableIIshowsthatforCase-2,SLLandDirectivityobtainedbyCSOaremuchbetterthanthoseobtainedbyRGA,PSO,DE,andthoseoftheuniformCCAA,withalittleincreaseinFNBW.Moreover,Case-2outperformsCase-1withrespecttoSLLandDirectivity.Figs.2and3showtheradiationpatterns(dB)obtainedbyCSOforCase-1andCase-2,respectively.
Theanalysisofallthenumericalresultsofthetwocasestud-iesdepictedinTableIIshowsthatDirectivityandSLLobtainedbyRGA,PSO,DE,andCSOforCase-2aremuchbetterthanthoseofthesamealgorithmsforCase-1.CSOforCase-2outperformsRGA,
PSO,andDE,fortheCase-1andCase-2,uniformCCAA,andthoseobtainedin[5]and[8]withrespecttoreducedSLLandimprove-mentinDirectivity.TableIIalsoshowsthatastheharmonicfrequencyincreasestheSBLsdecrease,consequently,theassociatedpowersdecrease.ThesametableshowsthatthevaluesofSBL1andSBL2arehigherthanSLL,butthepowerassociatedwiththefundamentalfrequencyismuchhigherthanthecorrespondingpowersP1andP2associatedwithSBL1andSBL2,respectively.ThismeansthateventhoughTMCCAAhasadrawbackofharmonicradiations,powersradi-atedbythesidebandsareveryless.SoonecansaythatCSOforCase-2yieldsthebestoptimalresultswithrespecttoDirectivityandSLL,respectively,forTMCCAA.
Comparisonsofaccuraciesbasedont-test:
TableIIIshowst-testvaluesobtainedamongtheRGA,PSO,DE,andCSO.Whenthet-testvaluegiveninTableIIIishigherthan1.676,2.009,2.403,2.678,2.937,3.261(β=50),thereisasignificantdiffer-encebetweenthetwoalgorithms(CSOoverRGA,PSO,andDE)with95%,97.5%,99%,99.5%,99.75%,99.9%confidencelevels,respec-tively[18].Thus,fromstatisticalanalysis,itisclearthatCSOoffersmorerobustandpromisingresultsascomparedtootheralgorithms.TableIVshowstheexecutiontimes,meanfitnessfunctionvalues,stan-darddeviationsforthefitnessfunctionsappliedforCase-2,obtainedbyRGA,PSO,DE,andCSO.
Inthiscommunication,p-valueusesstudent’stcumulativedis-tributionfunction[18].TableIIIshowsthatallp-valuesobtainedforCSOwithrespecttotheotheralgorithmsaremuchlesserthan0.05,Then,onceagain,itisclearthatCSOoutperformsRGA,PSO,andDE.
IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.63,NO.9,SEPTEMBER201183
TABLEIV
EXECUTIONTIMES,MEANFITNESSFUNCTIONVALUE,STANDARDDEVIATIONFORTHEFITNESSFUNCTIONSAPPLIEDFORCASE-2,
OBTAINEDBYRGA,PSO,DE,ANDCSO
IV.CONCLUSION
Inthiscommunication,a9-ring,279-elementtime-modulatedcon-centriccircularantennaarray(TMCCAA)isconsideredforsimultane-ousreductionofSLLandimprovementofDirectivitybythealgorithmcalledCSO.Twocasestudieshavebeentaken,Case-1:optimizingonlyswitchingtimesequenceofeachring;andCase-2:optimiz-ingswitchingtimesequence,ringradii,andnonuniforminterele-mentspacing.Authors’contributionsinthiscommunicationareinmanyfolds:1)thenewapplicationofCSOalgorithmintheopti-maldesignofTMCCAAforsimultaneousoptimizationofSLLandDirectivity;2)simulationresultsshowthatCase-2outperformsCase-1withrespecttoSLLandDirectivity;3)CSOforCase-2outperformsRGA,PSO,andDEforboththeCase-1andCase-2,uniformCCAA,andthoseobtainedin[5]and[8]withrespecttoreducedSLLandimprovementinDirectivity;4)powerradiatedatthesecondsidebandfrequencyismuchlowerthanthepowerradiatedatthefirstsidebandfrequencyandthatatthecenterfrequency;and5)fromthesimula-tionresultsitisclearthatastheharmonicfrequencyincreases,powersandSBLsoftheradiatedharmonicfrequenciesbytheantennarapidlydecrease.Ascomparedtothemethodofnonuniformamplitudeexcita-tionweightingmethod,controllingtheswitch-ontimeofeachelementisthebettermethodwhichcanbemorepreciselyandmorerapidlyrealized.Forstatisticalanalysis,t-testhasalsobeendoneforthetestofstabilityofCSOoverRGA,PSO,andDEforCase-2.t-testresultsshowthatCase-2withCSOgivesthebestqualitynear-optimalsolu-tionsascomparedtoRGA,PSO,DE,andCSO.ThefinalinferencemaybedrawninfavorofCSO,whichprovestobethebestconsideringallaspectsofradiationofTMCCAA.Thus,thenumericalresultsmakeitclearthatfortheoptimaldesignofTMCCAA,optimizingalgorithmsandselectionofproperoptimizingvariablesrelatedtothearrayplayimportantroles.
ACKNOWLEDGMENT
TheauthorswouldliketothankSERB,DepartmentofScienceandTechnology,GovernmentofIndia.
REFERENCES
[1]H.E.ShanksandR.W.Bickmore,“Four-dimensionalelectromagnetic
radiators,”Can.J.Phys.,vol.37,pp.263–275,Mar.1959.
[2]W.H.Kummer,A.T.Villeneuve,T.S.Fong,andF.G.Terrio,“Ultra-low
sidelobesfromtime-modulatedarrays,”IEEETrans.AntennasPropag.,vol.AP-11,no.6,pp.633–639,Nov.1963.
[3]B.L.LewisandJ.B.Evins,“Anewtechniqueforreducingradarresponse
tosignalsenteringantennasidelobes,”IEEETrans.AntennasPropag.,vol.31,no.6,pp.993–996,Nov.1983.
[4]S.Yang,Y.B.Gan,andP.K.Tan,“Evaluationofdirectivityandgain
fortimemodulatedlinearantennaarrays,”Microw.Opt.Technol.Lett.,vol.42,no.2,pp.167–171,2004.
[5]R.L.Haupt,“Optimizedelementspacingforlowsidelobeconcentricring
arrays,”IEEETrans.AntennasPropag.,vol.56,no.1,pp.266–268,Jan.2008.
[6]P.Rocca,Q.Zhu,E.T.Bekele,S.Yang,andA.Massa,“4-Darraysas
enablingtechnologyforcognitiveradiosystems,”IEEETrans.AntennasPropag.,vol.62,no.3,pp.1102–1116,Mar.2014.
[7]E.AksoyandE.Afacan,“Aninequalityforthecalculationofrelative
maximumsidebandlevelintime-modulatedlinearandplanararrays,”IEEETrans.AntennasPropag.,vol.62,no.6,pp.3392–3397,Jun.2014.
[8]L.Zheng,S.Yang,Q.Zhu,andZ.Nie,“Synthesisofpencil-beampat-ternswithtime-modulatedconcentriccircularringantennaarrays,”inProc.Prog.Electromagn.Res.Symp.(PIERS),Suzhou,China,Sep.2011,pp.372–376.
[9]J.Yang,W.T.Li,X.W.Shi,L.Xin,andJ.F.Yu,“AhybridABC-DE
algorithmanditsapplicationfortime-modulatedarrayspatternsynthe-sis,”IEEETrans.AntennasPropag.,vol.61,no.11,pp.85–95,Nov.2013.
[10]L.Poli,P.Rocca,G.Oliveri,andA.Massa,“Harmonicbeamforming
intime-modulatedlineararraysthroughparticleswarmoptimization,”IEEETrans.AntennasPropag.,vol.59,no.7,pp.2538–25,Jul.2011.
[11]Y.TongandA.Tennant,“Atwo-channeltimemodulatedlineararraywith
adaptivebeamforming,”IEEETrans.AntennasPropag.,vol.60,no.1,pp.141–147,Jan.2012.
[12]A.Tennant,“Experimentaltwo-elementtime-modulateddirectionfinding
array,”IEEETrans.AntennasPropag.,vol.58,no.3,pp.986–988,Mar.2010.
[13]G.Li,S.Yang,andZ.Nie,“Directionofarrivalestimationin
timemodulatedlineararrayswithunidirectionalphasecentermotion,”IEEETrans.AntennasPropag.,vol.58,no.4,pp.1105–1111,Apr.2010.
[14]Q.Zhu,S.Yang,R.Yao,andZ.Nie,“Directionalmodulationbasedon4-Dantennaarrays,”IEEETrans.AntennasPropag.,vol.62,no.2,pp.621–628,Feb.2014.
[15]E.Aksoy,“Calculationofsidebandradiationsintime-modulatedvolu-metricarraysandgeneralizationofthepowerequation,”IEEETrans.AntennasPropag.,vol.62,no.9,pp.4856–4860,Sep.2014.
[16]S.C.ChuandF.W.Tsai,“Computationalintelligencebasedonthe
behaviourofcats,”Int.J.InnovativeComput.Inf.Control,vol.3,no.1,pp.163–173,Feb.2007.
[17]S.K.Saha,S.P.Ghoshal,R.Kar,andD.Mandal,“Catswarmoptimiza-tionalgorithmforoptimallinearphaseFIRfilterdesign,”ISATrans.,vol.52,pp.781–794,2013.
[18]R.E.WalpoleandR.H.Myer,ProbabilityandStatisticsforEngineers
andScientists.NewYork,NY,USA:Macmillan,1978.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- dfix.cn 版权所有 湘ICP备2024080961号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务