Stoichio-kineticmodelingandoptimizationofchemicalsynthesis:Applicationtothealdoliccondensationoffurfuralonacetone
NadimFakhfakha,PatrickCogneta,∗,MichelCabassuda,
YolandeLucchesea,ManuelD´ıasdeLosR´ıosb
a
LaboratoiredeG´enieChimique,UMR5503CNRS,INPT(ENSIACET),UPS,5ruePaulinTalabot,BP1301,31106ToulouseCedex1,France
bCubanResearchInstituteforSugarCaneByproducts(ICIDCA),P.O.Box4026,HavanaCity,Cuba
Availableonline16January2007
Abstract
Thecondensationreactionoffurfural(F)onacetone(Ac)givesahighaddedvalueproduct,the4-(2-furyl)-3-buten-2-one(FAc),usedasaromainalcoholfreedrinks,ice,candies,gelatinesandotherproductsofcurrentlife.Thissynthesisvalorisestheresiduesofsugarcanetreatmentsincefurfuralisobtainedbyhydrolysisofsugarcanebagassefollowedbyvaportrainingextraction.Inthefaceofnumerousandcomplexreactionsinvolvedinthissynthesis,itisverycomplicatedtodefinethekineticlawsfromexactstoichiometry.Asolutionallowingtocopetheproblemconsistsinidentifyinganappropriatestoichiometricmodel.Itdoesnotattempttorepresentexactlyallthereactionmechanisms,butproposesamathematicalsupporttointegrateavailableknowledgeonthetransformation.Theaimofthisworkisthedeterminationofstoichiometricandkineticmodelsofthecondensationreactionoffurfuralonacetone.Concentrationsofreagentsandproductsaredeterminedbygasandliquidchromatography.Concentrationprofilesobtainedatdifferenttemperaturesareusedtoidentifykineticparameters.ThemodelisthenusedfortheoptimizationoftheproductionofFAc.Theinterestofsuchtoolisalsoshownforthescaleupoflaboratoryreactortoalargescale.Theanticipationofthereactionbehaviourinlargescaleiscrucialespeciallywhenthereactorpresentsimportantlimitationsofthermalexchangecapacity.©2007ElsevierB.V.Allrightsreserved.
Keywords:Furfural;Acetone;Chromatography;Aldoliccondensation;Batchreactor;Stoichio-kineticmodeling
1.Introduction
Chemicalindustriesofindustrializedcountriesturnincreas-inglytoproductswithhighaddedvalue,especiallyinthesectoroffinechemistry(pharmaceuticalproducts,cosmetics,etc.).Thistypeofindustry[1–3]isdifferentfromtraditionalchem-icalindustry.ThefinechemicalindustrylikeinFranceiswellknowntobeastrategicareawhichneedsalotofinvestmentsnotonlyfinancialbutinhighlevelscientificknowledgefortheR&D.Thesynthesesofsuchproductsaregenerallycomplexandinvolvesecondaryreactionswhicharetobeminimized.Inthisfield,thefasterdevelopmentofprocessesisessen-tialinordertoanswertherapidevolutionsofthemarket.Thedetailedstudiesofthemechanismsandkineticsofreactionsaregenerallynotcarriedoutforreasonsofdurationandcost.Nev-ertheless,foroptimizationandadvancedcontrolofprocesses
∗
Correspondingauthor.Tel.:+33534615260;fax:+33534615253.E-mailaddress:Patrick.Cognet@ensiacet.fr(P.Cognet).
offinechemistry,itisnecessarytoobtainareliablemodelofthesystem.Thisproblemisoftencircumventedbytheuseoflinearorquadraticpolynomialmodelswhichparameterscanquicklybeidentifiedbytheinstallationofexperimentalplan-ning[4].Nevertheless,thesemodelsrapidlyfindtheirlimitsinarestrictedfieldofvalidityandadifficultyofaccountingforthedynamicsofthesyntheses.
Sincefinechemicalreactionsareusuallycomplex,theirskineticsarepoorlyknown.Therealproblemisthefastdevel-opmentofrealisticandsafetystoichio-kineticmodelsofthesynthesis[5–8].However,duetohighpurityrequirements,environmentalregulationandcompetitivepressureonthenewproducts,thedevelopmentofdynamicmodelshasbecomeanimportantobjective.
Theapproachproposeddoesnotdependonadetailedandpredictivemodeloftheprocessandatthesametimeitdoesnotignorewhatwealreadyknowabouttheprocess,suchasmaterialbalances,heatandmasstransfercharacteristics,etc.Nevertheless,astoichiometricmodelshoulddescribethediffer-entstagesofthesynthesis,orthemostimportanttendencies.It
0255-2701/$–seefrontmatter©2007ElsevierB.V.Allrightsreserved.doi:10.1016/j.cep.2007.01.015
350N.Fakhfakhetal./ChemicalEngineeringandProcessing47(2008)349–362
canbeobtainedbycreatingpseudo-reaction(roundupofseveralreactions)orpseudo-compound(roundupofseveralcompoundsoradditionoflosses)[5].Theidentifiedmodelcanbeusedtocalculatethekineticofthedifferentreactionsdeterminingthustherateofthechemicaltransformation.Thistechniquehasbeenusedwithsuccessbyseveralresearchers[9–15]forthemodel-ingofchemicalsynthesesliketheepoxidationofoleicacid[14],orthepolymerizationofacrylonitrile-styrene[10]carriedoutinbatchreactors.
Inseveralcases,theoptimizationproblemsofdiscontinuousreactorareformulatedwithtwokindsofobjectives:maximumconversionproblem,theoperativetimeisfixedapriori,ormin-imumtimeproblem,theconversionrateofwishedproductisfixedapriori.
Garciaetal.[16]consideredthefirstcase.Theyconvertedtheproblemofoptimalcontrolintoanon-linearproblemsolvedbyareducedgradientalgorithm(GRG)coupledwiththegoldensearchmethod.Thistoolallowstooptimizesimultaneouslydifferentvariables(temperature,feedflowrateandamountofreactant,operationtime,etc.)andtotakeintoaccountboundsandlinearand/ornon-linearconstraintsonthevariables.Theuseofconstraintsallowstoreachasolutionwitchisnotonlyanumericalsolutionbutwitchisclosertotheexperimentalreality.
AzizandMujtaba[17]areinterestedtotheconsecutivereac-tionoptimizationinbatchreactors.Theoptimizationproblemsareformulatedwithenvironmentalandoperationalconstraintsandsolvedbythecontrolvectorparameterisation(CVP)tech-nique.Twodifferentmodelsarepresented:ashortcutmodel,consistingofonlymassbalanceandreactionkinetics,allowsdeterminationoftheoptimalreactortemperatureprofilestoachieveadesiredperformance.Theoptimaltemperatureprofilescanthenbeusedasabasisforthedetaileddesignofthereactor(i.e.reactorvolume,heating/coolingconfiguration,etc.).Thedetailedmodel,consistingofmassandenergybalances,reactionkineticsandcooling/heatingconfiguration,allowsdetermi-nationofthebestoperatingconditionsofalreadydesignedreactors.
Inthiswork,themethodologyisillustratedthroughitsapplicationtoacomplexchemicaltransformation:aldoliccon-densationoffurfural(F)onacetone(Ac),whichallowsmainlytwoproductsnoted(FAc)and(F2Ac)tobeobtained.Thissynthesisvalorisestheresiduesofsugarcanetreatmentsincefurfuralisobtainedbyhydrolysisofthesugarcanebagassethenextractedbyvaportraining.The(FAc)isusedasaromainsev-eraltypesoffoodindustries.ThestudyofthissynthesishasbeenmadewiththecollaborationofCubanResearchInstituteforSugarByproducts(ICIDCA).2.Theoreticalpart
2.1.Identificationofastoichiometricmodel
Thestoichiometryofchemicaltransformationdeterminestheproportionsaccordingtowhichthedifferentconstituentsreactorareformed.Ingeneral,theseproportionsareintegerorsemi-integer.
ThestoichiometryofareactionsysteminvolvingNCspeciesAj(j=1,NC)andNRreactionsRi(i=1,NR),canbewritten:
NCνijAj=0(1)
j=1
whereνijisthestoichiometriccoefficientofAjinthereactionRi.
•Ifνij>0thenAjisaproductinthereactioni;•Ifνij<0thenAIfνjisareactantinthereactioni;•ij=0thenAjisnotinvolvedinthereactioni.
ForabatchreactorandadatabaseofNEexperiments(k=1,NE),themolenumberofthecompoundAjinthechemicaltransformation,representedbyseveralreactionsRi,isgivenby
nNRjk=n0jk+n
0
νijXik(2)
i=1
wherenjkisthemolenumberofAjintheexperimentkattheinstantt,n0jktheinitialmolenumberofAjintheexperimentk,XiktheextentofthereactionRiintheexperimentk,andn0isthenormalizingfactorequaltothesumoftheinitialreactantsmolenumbers.n0
=
NCn0jk,
k=1,NE(3)
j=1
Forsimplificationreasonswenote:Yjk=
yjk−y0n0jk
=
njk−jk
n0(4)
Eq.(2)becomes:NRYjk=
νijXik(5)
i=1
Theequationsystemrepresentingthewholesetofequationscan
beputunderthefollowingmatrixform:[Yjk]=[νij]T[Xik](6)
Ormoresimply:Y=νTX
(7)Severaltechniqueshavebeendeveloped[5]allowingtheiden-tificationofthestoichiometryofchemicalsyntheses.Thefirstmethodproceedswithiterativewaybyconstructingreactionbyreactionamoreandmorecomplexsystemtoimprovetherepresentativenessofthestudiedsynthesis.Thesecondmethodtreatstheprobleminamoreglobalmanneranddeterminesastoichiometricmatrixinonlyonestage:itisthesingularval-uesdecomposition(SVD)method[18,19].Anapproachcalled“targetfactoranalysis”(TFA)[20]enablestoknowwhetherapostulatedstoichiometryfromaprioriinformationiscompatiblewiththeabstractfactors.
N.Fakhfakhetal./ChemicalEngineeringandProcessing47(2008)349–362351
2.2.Identificationofkineticmodel
Themolarbalanceforareactoroperatinginbatchorsemi-batchmodegives:dnj
dt
=Fej+RjVr(8)
withnjisthemolenumberofAjatinstantt,FejthefeedrateofthecompoundAj(j=1,NC),andVristhereactorvolumeandNRRj=
νijri(9)i=1
Rjistheproductionrateifitispositiveandconsumptionrateifitisnegativeandriistherateofreactioni.
Eq.(8)maybewrittenwithextentofreaction,weobtain:dXidt=Vr
n0ri(10)
Inthiswork,thetransformationissupposedtobeapseudo-homogeneousoneandthekineticlawiswrittenasaclassicalArrhenius’slaw.Itisimportanttoemphasizethattheformofthekineticlawanditsdegreeofcomplexitydependontheuserandthedesiredaccuracyofthetendencymodel.So,wehaver
NCi=
k0ie
−Eai/RTCajij
(11)
j=1wherek0iisthepre-exponentialfactorforreactioni,Eatheacti-vationenergyforreactioni,Ci
jtheconcentrationofconstituentj,andaijistheorderofconstituentjinthereactioni.Accordingto(11),Eq.(10)maybewritten:
dXi
VNC
0−Ea/RTdt
=an0kiei
Cjij(12)
j=1
Theordersareassumedtobepartofthedataoftheproblem
andarechosenaprioritobeequaltotheabsolutevalueofthestoichiometriccoefficientsofeveryreactant.Theidentifi-cationofkineticparameters(pre-exponentialfactor,activationenergy)isdeterminedbyminimizingthedifferencebetweentheexperimentalconcentrationsandthosecomputedwiththeiden-tifiedparametersforthedifferentconstituentsaccordingtothefollowingcriterion:J=NENCC00
0(Cfjkid−Cf
jkexp)
2
(13)
k=1j=1C1k
with
C00
=
NEC0
1k
(14)
k=1
andC0istheconcentrationofakeyreactantinexperimentk.The1k
wholeprocedurehasbeenimplementedonsoftware,Batchmod[21].
Thecorrelationcoefficient(r)isusedtomeasurethe“good-nessoffit”.Itisdefinedas
N
r=i=1(xi−¯)(yi−y¯)Ni=1(xi−x¯)2xN(15)i=1(yi−y¯)2
whereximeansdatapointsandyimeansmodelpoints.
Theaverageofthedatapoints(¯x)andthemodelpoints(¯y)aresimplygivenby1N
N
x¯=Nxi
and
y¯=1
Nyi
(16)
i=1i=1
Asthemodelbetterdescribesthedata,thecorrelationcoef-ficientwillapproachunity.Foraperfectfit,thecorrelation
coefficientwillapproachr=1.2.3.Optimizationofchemicalsynthesis
Thegeneralprocedureofoptimizationisformulatedasthefollowing[22]:minf(x),
x∈n;
gi(x)=0,
i=1,me;gj(x)≤0,j=me+1,m;
xl≤x≤xu
(17)
wherefistheobjectivefunctiontominimize,githeequalitycon-straints,gjtheinequalityconstraints,methenumberofequality
constraints,mthetotalnumberofconstraints,xlthelowlimitofxvariable,andxuistheuplimitofxvariable.
Thegoaloftheproblemistominimizeafunctionfthatdependsonseveralvariables.Thesevariablesarelimitedandsubmittedtoequalityandinequalityconstraints.Ingeneral,thefunctionfisnotlinearandisnotgivenunderexplicitshapeofvariables.
Theoptimizationofachemicalsynthesisisthedetermina-tionoftheworkingconditions(temperature,feed-rate,operativetime),thatmaximizeasynthesiscriterion(output,concentration,etc.)undersomeconstraints.
Theresolutionoftheproblemrequiresthediscretisationoftemperatureprofilesandfeed-ratesintofiniteintervalsinsidetheintervalofoperation[t0,tf],wheret0representstheinitialtimeofoperationandtfthefinaltimeofoperation.Theinterval[t0,tf]isdiscretisedintoafinitenumber(nint)ofintervals.Afunctionisdefinedtorepresenttheevolutionofthecontrolvariablev(t)ineverytimeinterval:
v(t)=Φ(t,zj),t∈
tj−1,tj,j=0,nint
(18)wheretisthecommutationtimeandzjisthetemperatureand
feed-ratevaluesinboundsofeachinterval.
Inordertoavoidcomplextemperatureandfeedprofiles,Φfunctionisassimilatedtoasimplefunction:
•Alinearfunctionforthe
temperature:
v(t)=zj−1+(t−tj−1)
zj−zj−1
tj−tj−1
,j∈[1,nint](19)
352N.Fakhfakhetal./ChemicalEngineeringandProcessing47(2008)349–362
Thelasttemperatureofintervaljissupposedtobeequaltotheinitialtemperatureofintervalj+1.•Aconstantfunctionforthefeed-rate:v(t)=aj,
j∈[1,nint]
(20)
Theprogramdeterminesthemassflowineveryintervalandsupposesthatitremainsconstantinthisinterval.Thefeed-rateisthusasuccessionoflandings.Theresolutionoftheoptimizationproblemreturnstothedeterminationof(nint+1)temperaturesandnintvaluesoffeed-rate.
Thisoptimizationmethodallowstoscaleupachemicalreac-tioninbatchreactorwithsafetyconstraints[23,24].2.4.Energybalance—thermalfluxmodeling
AclassicalSemenov-typeanalysis[25]isusedtodescribetheexothermicreaction.Therateofheatproductionisproportionaltothereactionspeed,whichmeansitisanexponentialfunctionoftemperature.ItisgivenbyEq.(21):
QVEreleased=rHk0exp−a
RTCinitial
(21)whereQreleasedistheheatfluxreleasedbythereaction,Vrthereactingvolume,Htheheatofreaction,k0thepre-exponentialfactorofreaction,Eatheactivationenergy,andCinitialistheinitialconcentration.
ThethermalfluxevacuatedoutofthereactorisexpressedbyEq.(22).Itisproportionaltoatemperaturedifferencebetweenreactingsolutionandcoolantfluid,exchangeareaandglobalheattransfercoefficient.Alittlevariationofcoolantfluidtem-peratureinducesalinearvariationofthermalfluxevacuatedfromthereactor:
Qevacuated=UA(Tcf−Treactor)
(22)
whereQevacuatedisthethermalfluxevacuatedwithjacketreac-tor,Utheglobalheattransfercoefficient,Atheexchangesurfacereactor,Tcfthecoolingfluidtemperature,andTreactoristhereactortemperature.3.Experimentalpart
3.1.Aldoliccondensationoffurfuralonacetone
Thealdoliccondensation[26–29]offurfural(F)onacetone(Ac)takesplaceinalkalinemedium.Itimpliesthegenerationofacarbanionobtainedfromabstractionofaprotoninalphaofacetonecarbonylfunctionandleadstothe4-(2-furyl)-3-buten-2-one(FAc).Becauseofthesymmetryoftheacetonemolecule,asecondattackofthefurfuralcanhappenwhichthenleadstothedi-addingproduct,the1,4-pentadien-3-one,1,5-di-2-furanyl(F2Ac).
Thedifferentstepsfortheformationof(FAc)moleculecanbewritten:
(a)Extractionofaprotononacetoneandformationofthe
carbanion:
(b)Condensationofthecarbaniononthecarbonoffurfural
carbonylfunction:
(c)FixationofH+ontheoxy-anion:
(d)Regenerationofhydroxideionbaseanddehydrationinbasic
medium:
Finally,thereactionsofformationof(FAc)and(F2Ac)are:
(23)
(24)
Thereversibilityofreactions(23)and(24)arenegligi-ble.Besidesthesetworeactions,othersmayhappen.Amongsttheknownreactions,furfuralcanreactwithitselfinanoxydo-reductionreaction(Cannizaroreaction)togiveahigher
N.Fakhfakhetal./ChemicalEngineeringandProcessing47(2008)349–362353
oxidationproduct,the2-furoicacid(Furo),andaloweroxida-tionproduct,thefurfurylalcohol(Furfu)[30].Thisreactioncantakeplaceinhighlyalkalinemedium.Ontheotherhand,acetonecanreactonitselftogivethe4-hydroxy-4-methylpentan-2-one(Ox1),whichafterdehydrationleadstothemesityloxide(Ox2)[30].
3.2.Conditionsofthereaction
Thereactionsareachievedindiscontinuousmodeinajack-etedglassreactorof250mLcapacity(Fig.1).Theacetoneandthefurfuralarechargedinthereactorwithequi-molarquantities.Thesolventusedisanequi-molarmixtureofwaterandethanol.ThepresenceofethanolinthemediumfavoursthedissolutionofFAcandF2Acwhicharenotsolubleenoughinwater.Anaque-oussolutionofsodiumhydroxide(0.03molL−1)isinjectedtotriggerthereaction.Thetemperatureofthemediumcanbemain-tainedconstantthankstoaheating-coolingsystem.Thereactionvolumeisconstantandequalto98mL.
Theinitialcompositionsarechosenaccordingtothesug-gestionsoftheCubanResearchInstituteforSugarByproducts(ICIDCA).Itwasnotvariedbecauseofindustrialrestrictions.3.3.Analyticalprocedure
(25)
(26)
Allusedchemicalshaveanalyticalgrade.The1,4-pentadien-3-one,1,5-di-2-furanylisnotcommercialized,therefore,ithasbeenpreparedandpurifiedinthelaboratory.
Theconcentrationsofreagentsandproductsaredeterminedbygasandliquidchromatography.Onlytheacetoneismeasuredbygaschromatography,theformedproducts(FAcandF2Ac)beingheat-sensitives.Forthetwotechniques,ethanolisusedasaninternalstandardinadditiontoitssolventrole.
Fig.1.Experimentalequipmentusedforthechemicalsynthesis.
3N.Fakhfakhetal./ChemicalEngineeringandProcessing47(2008)349–362
Table1
WavelengthscorrespondingtoamaximalUVabsorptionProducts
AcetoneFurfuralFAcF2Ac
2-FuroicacidFurfurylalcoholMesityloxide
4-Hydroxy-4-methylpentan-2-one
λmax(nm)265274322382228220232232
Forgaschromatography,theinjectionsarerealizedinsplitmode.Aflameionizationdetector(FID)isused.Apolarcolumn(FFAP,25m×0.32mmi.d.)withafilmthicknessof0.25mseparatesthesolventandthematrixofcomponents.Theinjectorismaintainedatatemperatureof250◦C.Theflameionizationdetectorisheateduntil300◦C.Theinitialtemperatureoftheovenis50◦C.After1.5min,thetemperatureincreasesquicklyattherateof50◦C/minuntil240◦Cthenitremainsconstantduring5min.Thetotaltimeofanalysisis10.3min.Heliumisusedasthecarrier-gas.
Theproducts(F),(FAc)and(F2Ac)aremeasuredbyhighperformanceliquidchromatography(HPLC)[31–36].Thesys-temisequippedwithUV–visdetectorandanautomaticinjectorof25Linfullloop.AnODSHypersylC185mcolumn(125mm×4mmi.d.)isusedfortheseparationoftheproducts.ChemicalcompoundshavedifferentmaximumUVabsorp-tionatdifferentwavelengths.Table1showsthewavelengthatwhichthemaximumUVabsorptionisobservedforthecom-poundsofthesynthesis.Theuseofthreedifferentwavelengths(265,322and382nm)allowstomeasurewithprecisionthequantityofdifferentcompounds.
Theeluentisamixtureofwaterandmethanol.Fig.2sum-marizestheprocedureofHPLCanalysisadoptedtofollowtheconcentrationsofthedifferentcompoundsinthealdoliccon-densationoffurfuralonacetone.4.Resultsanddiscussion
4.1.Identificationofastoichiometricmatrix
Severalreactionshavebeencarriedoutattemperatureof24,29,34and40◦Candatmosphericpressure.Thestudyhasnotexceeded40◦Cbecausetheacetoneebullitiontemperatureis56◦C.Themolenumbervariationofthecompoundsat24◦C(Fig.3)showsthedisappearanceofacetoneandfurfuraland
Fig.3.Molenumberevolutionofthecompoundsat24◦C.
theapparitionof(FAc)and(F2Ac).Theconversionoffurfuralapproaches95%whilethatofacetoneisnear62%.Thepro-ductionof(F2Ac),moreimportantthanthatof(FAc),explainsthebestconversionofthefurfural.Furthermore,theanalysishasnotrevealedthepresenceofeither2-furoicacidorfurfurylalco-hol.Alsoneither(Ox1)nor(Ox2)wasdetected(Eq.(26)).Thensuggestedreactionsforthesynthesisareonlyreactions(23)and(24).
Inordertoverifytheaccuracyofthesupposedstoichiometricmatrix,itisnecessarytoverifythatmolarandmassbalancesarecorrect.Assumingthatonlyreactions(23)and(24)occur,themolarbalancecanbewrittenasn0F=nF+nFAc+2nF2Acn0Ac=nAc+nFAc+nF2AcnH2O=nFAc+2nF2Ac
(27)(28)(29)
Itisnecessarytodeterminethenumberofmolesofwaterformedduringthesynthesistobeabletoestablishthemolarandmassbalances.Theformedwaterisnotdeterminedbychromatogra-phybutcalculatedaccordingtoEq.(29).However,waterpresentatthebeginninginthemediumdoesnotappearinthebalanceandwastakenintoaccountintheconcentrationofthesolvent.Themassbalanceshowsadeficitwhichincreaseswithtimeandthendecreasesattheendofthesynthesis(Fig.4).Thefur-furalandtheacetoneweremoreconsumedthanthepredictionwiththesupposedreactionscheme.Supplementaryreactionsmustthereforebeaddedtothestoichiometricmodel.TheCan-nizaroreactionbeingrejected,thepossibilityofpolymerizationreactionswasstudied.Themainreactionofpolymerizationmen-
Fig.2.ChangeofwavelengthandeluentcompositionfortheanalysisbyHPLC.
N.Fakhfakhetal./ChemicalEngineeringandProcessing47(2008)349–362355
Sinceproduct(P)appearsatthesametimeas(FAc),thenitcannotbeapolymerofthelater.Itisratherformeddirectlyfromthefurfuralandtheacetone(Eq.(30)).Thisequationisonlyarepresentationanddoesnotaccountforachemicalmechanism.Itwouldthenimplyafivereactantsencounter,whichisnotrealistic.Theproduct(P)disappearsduringthereaction,thisdisappearancecouldberepresentedbyEq.(31).HPLCandGCanalyseshasnotrevealthepresenceofotherproductsasidefurfural,acetoneFAc,F2AcandP,thatiswhythedecompositionofPtoFAcandF2Acisthemostprobableandnototherproducts.Finally,itwassuggestedthatthissynthesiscouldberepresentedbythefourreactions(23),(24),(30)and(31).
Fig.4.Massbalancefortheexperimentat24◦C(H2OcalculatedfromEq.(21)).
(30)
(31)
Themolarbalancesassociatedtothereactions(23),(24),(30)and(31)become:
Fig.5.ExampleofHPLCchromatogram(experimentat40◦C,reactiontime=10min).
n0F=nF+nFAc+2nF2Ac+3nPn0Ac=nAc+nFAc+nF2Ac+2nPnH2O=nFAc+2nF2Ac+3nP
(32)(33)(34)
tionedintheliterature[37]istheformationof(FAc)nfromthe
(FAc)inbasicmedium,nbeingsuperiororequalto2.
IntheHPLCchromatogramsobtained,anunidentifiedpeakcanbenoticed.Itispresentduringthefirstminutesofthesyn-thesisandthenitdisappears.Ithasaretentiontimenearthatof(FAc).Theproduct(P)whichcorrespondstothispeakissensitivetothewavelengthof322nm(Fig.5).
Toidentifytheproduct(P),weusedtheHPLCanalysiscou-pledwithmassspectroscopy(Fig.6).Thisanalysisrevealedthatthisproducthasanimportantmolarmassnear350gmol−1.Thedevelopedformulaof(P)showninFig.6isoneofpossibleformulasdeducedfromthefragmentsidentifiedonthespectrum.
Withthenewreactionssystemproposedforthesynthesis,theconcentrationsof(P)andwatercanbecalculatedbytwoways,fromthebalanceonacetone(Eqs.(33)and(34)),orfromthebalanceonfurfural(Eqs.(32)and(34)).Thetwomethodshavebeentestedandthevaluesobtainedwereveryclose.Contrarilytothepreviouscase(systemoftworeactions)therepresentationofthesynthesisbyfourreactionsallowstogetacorrectmassbalance.Themaximalerrorobservedis6.1%(Fig.7).
Theexperimentcarriedoutattemperaturesof24,29,34and◦40Callowtogeneratearangeofinput/outputconcentrations
Fig.6.Spectrumofmassspectroscopy(thepeakat240.3amuisvisibleonthespectraofallanalyzedsamples).
356N.Fakhfakhetal./ChemicalEngineeringandProcessing47(2008)349–362
Fig.7.Massbalancefortheexperimentat24◦C(H2OcalculatedfromEq.(26)).
forthesixcomponentsofthesynthesisandthereforetofeedthealgorithmofcalculation.TheSVDmethodprovidesthefollow-ingsingularvalues:
Knowingthatthemostimportantvaluesindicatethenumberofnecessaryreactionsforthedescriptionofthesynthesis,itcanbeassumedthatthechemicaltransformationcanbedescribedadequatelybyasystemoffourorfivereactions.
Accordingtotheavailableknowledgeaboutthetransforma-tion,itwaspostulatedastoichiometrywithfourreactions:•Thefirstreactionrepresentstheformationof(FAc)fromfur-furalandacetone.
•Thesecondreactionrepresentstheformationof(F2Ac)from(FAc)andfurfural.
•Thethirdreactionrepresentstheformationof(P)fromthreemolesoffurfuralandtwomolesofacetone.
•Thefourthreactionrepresentstheconsumptionof(P).Onemoleof(P)givesonemoleof(FAc)andonemoleof(F2Ac).Table2containsthepostulatedstoichiometryandTable3containsthecalculatedstoichiometry.Eq.(35)allowstheerrorbetweenthetargetmatrixandthecalculatedmatrixforeveryreactionto
becalculated:
error(i)=NC2j=1νtargetij
−νcalculatedijNCν(35)j=1targetij
2Table2
Targetstoichiometricmatrix
F
AcFAcF2AcPH2OReaction1−1−11001Reaction2−10−1101Reaction3−3−20013Reaction4
0
0
1
1
−1
0
Table3
Calculatedstoichiometricmatrix
F
AcFAcF2AcPH2OReaction1−0.983−1.0120.9850.048−0.0170.980Reaction2−1.0370.043−0.9850.9940.0341.044Reaction3−2.988−2.022−0.0430.0741.0212.987Reaction4
−0.015
0.025
1.039
0.916
−1.034
0.016
Table4
Kineticparametervalues(reactionrateinmolL−1s−1)
Activationenergy,Ea(Jmol−1)
Pre-exponentialfactor,k0Reaction174581.5593.7979×108Reaction235959.7312.2094×102Reaction3514.4594.4197×104Reaction4
117919.191
9.20×1015
Anerrorof3.02%wasobtainedforthemainreaction,4.05%forthesecondreaction,1.93%forthethirdreactionand6.03%forthefourthreaction.Resultsshowthatthepostulatedstoi-chiometryiscompatiblewiththeabstractfactors.Themodelcanthereforebeadoptedfortheidentificationofkineticparameters.4.2.Determinationofthekineticparameters
Thedeterminationofthestoichiometryofthechemicaltrans-formationallowstofindtheproportionsaccordingtowhichthecomponentsreact.Thenextstepformodelingconsistsinidenti-fyingthekineticparametersforeachreaction.Inthiswork,thetransformationissupposedtobeapseudo-homogeneousoneandthekineticlawiswrittenasaclassicalArrhenius’slaw.Theordersofcompoundsaretakenequaltoabsolutevaluesofstoichiometriccoefficientsforthereactantsandzerofortheproducts.Table4givesthevaluesofactivationenergy(Ea)andpre-exponentialfactor(k0)identifiedaccordingtoEq.(11).Thefirstreactionissensitivetotemperature;theproductionof(FAc)increasesastemperaturerises.Thesecondreactionislesssensitivetotemperaturethanthefirst.Thethirdreactionwhichcorrespondstotheformationof(P)isfarlessactivatedbytemperaturethanthefourthreactionwhichcorrespondstotheconsumptionof(P).Thedisappearanceof(P)issomorerapidat40◦Cthanat24◦C.
Fromthekineticparameters,thetime-dependenceoftheoret-icalconcentrationscanbeillustrated.Thecomparisonbetweenthetime-dependenceconcentrationsobtainedfromtheexperi-mentandfromthemodelisgiveninFigs.8–11.Astatisticalanalysisisprovidedregardingthesignificanceofthefittedkineticparameters.Table5showsthecorrelationcoefficients
Table5
Correlationcoefficients
F
AcFAcF2AcPH2OReactionat24◦C0.99950.99840.150.99740.92670.9995Reactionat29◦C0.99730.99860.90690.99860.91560.9973Reactionat34◦C0.99530.99560.90410.99940.90510.9953Reactionat40◦C
0.9972
0.9991
0.9252
0.9970
0.9688
0.9972
N.Fakhfakhetal./ChemicalEngineeringandProcessing47(2008)349–362357
Fig.8.Evolutionofcompoundconcentrationsforthereactionat24◦C((—)model;()experimentalpoints).
Fig.9.Evolutionofcompoundconcentrationsforthereactionat29◦C((—)model;()experimentalpoints).
obtainedusingEq.(15).Agoodagreementwasobtainedbetweentheexperimentalandmodelrepresentationoffur-fural,acetone,(F2Ac)andwater.However,theevolutionofthecompounds(FAc)and(P)isnotasgood.Behaviouroftheseintermediatecomponentsisthemostdifficulttopredict
Fig.10.Evolutionofcompoundconcentrationsforthereactionat34◦C((—)model;()experimentalpoints).
Fig.11.Evolutionofcompoundconcentrationsforthereactionat40◦C((—)model;()experimentalpoints).
becausetheyplaytheroleofreagentsandproductsatthesametime.
4.3.Optimizationofthesynthesis
Inthepreviousparagraphs,astoichio-kineticmodelofaldoliccondensationoffurfuralonacetonehasbeendetermined.Thismodelgivesasatisfactoryrepresentationofthesynthesisbehaviourandcanbeusedthereforeforitsoptimization.ThestoichiometricmatrixadoptedisReaction1:F+Ac−k→1
FAc+H2O,r1=k1[F][Ac]Reaction2:
F+FAc−k→2
F2Ac+H2O,r2=k2[F][FAc]Reaction3:3F+2Ac−k→3P+3H2O,r3=k3[F]3[Ac]2
Reaction4:
P−k→4
FAc+F2Ac,
r4=k4[P]
4.3.1.Optimizationatlaboratoryscale
Inthissection,theamountsofreactantsarethesameasthereusedforexperiments,1correspondingtoaninitialconcen-trationof3molL−forfurfuralandacetoneinbatchmode.Theoperationtimeisequalto4h.
ThecriteriontomaximizeisthefinalFAcyield,definedastheratiobetweenthemolenumberofFAcpresentattheendofoperation,andthemolenumberofinitialacetoneloadedinthereactor(Eq.(36)):criterion=
molenumberof(FAc)attheendofoperation
molenumberofinitialacetone
(36)
Thetemperaturedomainusedis20◦C≤temperature≤40◦C
Theminimalandmaximaltemperaturechoicehasbeenguidedbytheexperimentaldomainthathasbeencoveredwiththeexperimentaltests.Inparticular,thehighesttemperaturehasbeenlimitedto40◦C.Takingalargerdomainwouldleadtosolutionsforwhichthevalidityofthemodelwouldbevery
358N.Fakhfakhetal./ChemicalEngineeringandProcessing47(2008)349–362
Fig.12.Resultsofthesimulationindiscontinuousmodeatlaboratoryscale.
uncertain.Moreover,atatmosphericpressure,thetemperatureislimitedby56◦Ctheacetoneboilingpoint.
•Workingindiscontinuousmode(Batch),thebestisothermis40◦C,themaximumthermalfluxgeneratedisequalto10W(Fig.12)andFAcyieldapproaches29.82%.Feedingacetonecouldleadtolargeamountoffurfuraltogetherwithlowcon-centrationofacetone.ItwouldthenfavourF2Acformation.Itwasthendecidedtofeedfurfural.
Bycomparingthealdoliccondensationoffurfuralonace-tonetoathermodynamicsystem,itisclearthatthissystemlosesenergysincethesynthesisisexothermic,whichexplainsthenegativevaluesofthethermalfluxesinthedifferentfig-ures.
•Whileapplyingafeed-rateof2.2916×10−4kgmin−1during2handlookingforthebestisotherm,theoptimaltemperatureis40◦C,thethermalfluxreachesamaximumof1.5Wandtheyieldliesaround28.5%(Figs.13and14).Whenreduc-ing◦thefeedingtimeto1h,theoptimaltemperatureisalways40C,thethermalfluxreaches2.8Wandthechemicalyieldisslightlyimprovedandbecomes28.87%(Figs.15and16).Bydecreasingthefeedingtimeto30mn,theoptimaltem-peraturedoesnotchange(40◦C),thethermalfluxincreasesto5.2W.Furthermore,theobtainedchemicalyieldisabout29.43%.Thisresultisthenearestonecomparedtothediscon-
Fig.13.Resultsofthesimulationinsemi-continuousmodeatlaboratoryscalewithafurfuralfeed-rateduring120min.
Fig.14.Evolutionofcompoundconcentrationsofthereactionat40◦Cinsemi-continuousmodewithafurfuralfeed-rateduring120min(calculatedpointswithsmoothing).
Fig.15.Resultsofthesimulationinsemi-continuousmodeatlaboratoryscalewithafurfuralfeed-rateduring60min.
tinuousmode(Figs.17and18).Table6summarizesoperativeconditionsobtainedforthedifferentproblemstreatedinsemi-continuousanddiscontinuousmodeatlaboratoryscale.Heatgeneratedinbatchmodecanbeeasilyremovedatlabo-ratoryscale.Intheopposite,itisdifficulttoevacuatethisheatatindustrialscale.Thecoolingcapacityofdiscontinuousreactors(typeagitatedtank)isgenerallylimited.Especially,theratiosur-
Fig.16.Evolutionofcompoundconcentrationsofthereactionat40◦Cinsemi-continuousmodewithafurfuralfeed-rateduring60min(calculatedpointswithsmoothing).
N.Fakhfakhetal./ChemicalEngineeringandProcessing47(2008)349–362359
Fig.17.Resultsofthesimulationinsemi-continuousmodeatlaboratoryscalewithafurfuralfeed-rateduring30min.
Fig.18.Evolutionofcompoundconcentrationsofthereactionat40◦Cinsemi-continuousmodewithafurfuralfeed-rateduring30min(calculatedpointswithsmoothing).
face/volumedecreaseswhenthereactorsizeincreasesandtheexchangecoefficientsdegradeespeciallyforglasslinedreactors.4.3.2.Extrapolationtoindustrialscale
A3m3industrialreactorischosen(cylindricalshape,diame-terof1.4m,heightof1.95mandareaof10m2).Theamountsofreagentsintroducedaremultipliedby3×104comparedtothoseusedatlaboratoryscale.Thereactingvolumeisabout2850l.
ReagentsandsolventsFurfural828kg(8.618kmol)Acetone501kg(8.626kmol)Ethanol1050L(17.990kmol)Water
450L(24.934kmol)Sodiumhydroxide
1.8kg(0.045kmol)
Theoptimaloperatingmodeisbatch,assuggestedbythecon-secutive/competitivereactionscheme.At40◦C,themaximumthermalenergyreleasedisabout300kW(10Watlaboratoryscale).Eq.(22)isusedtoestimatethemaximumthermalfluxevacuatedbythejacketofthereactorconsideringaglobalheattransfercoefficientequalto150Wm−2K−1[38],aminimalexchangesurfaceof10m2andadifferenceof10◦Cbetweenthecoolingfluidtemperatureandthereactiontemperature.Thereactorcanonlyevacuate15kW.Asafetyconstraintbecomesnecessary.
Table6
Operativeconditionsobtainedfordifferentproblemsinsemi-continuousanddiscontinuousmode(reactiontime240min)Feed-rate120
60
30
Batch
time(min)Feed-rate2.2916×10−44.5833×10−49.1667×10−4Batch(kgmin−1)Temperature40404040(◦C)
Thermalflux1.42.75.210(W)Output(%)
28.46
28.87
29.43
29.82
Byrespectingthislimit,thesynthesiscanbecarriedoutindiscontinuousmodeatatemperatureof−10.3◦C.Theresult-ingyieldis1.5%smallerthanatalaboratoryscale.Interestofdiscontinuousmodeattheindustrialscaleisratherpoor.
Theproblemtosolveconsists,firstly,tomaximizetheyieldofFAcbyworkingathightemperature,andsecondary,toimposeasafetyconstraintof15kWinordertorespectthelimitsofthereactorcoolingsystem,minimizingthusthethermalrun-awayrisks.Thesemi-continuousmodebecomesnecessary.
Theaimofthispartistodetermineafurfuralfeed-rateprofileat40◦C,underasecurityconstraintof15kW.Thecriteriontomaximizeisstillthesame(Eq.(36)).Researchisunderthefollowingconstraints:•Limitsofthefeed-rate:
0kgmin−1≤flow≤15kgmin−1•Gradientofthefeed-rate:D
t=±2kgmin−2
max
•Tointroduce828kgoffurfuralinthereactorin240min,thenecessaryfeed-rateis3.45kgmin−1.Withthisfeed-rateandthetemperatureof40◦C,thethermalfluxreaches21.7kW(Figs.19and20).Thisvalueissuperiortothelimitsupported
Fig.19.Resultsofthesimulationinsemi-continuousmodeatindustrialscalewithafurfuralfeed-rateduring240min.
360N.Fakhfakhetal./ChemicalEngineeringandProcessing47(2008)349–362
Fig.20.Evolutionofcompoundconcentrationsofthereactionat40◦Cinsemi-continuousmodewithafurfuralfeed-rateduring30min(calculatedpointswithsmoothing).
Fig.21.Resultsofthesimulationinsemi-continuousmodeatindustrialscale.
bythereactorcoolingsystem.Itisnecessarytoincreasetheoperativetimetobeabletolimitthethermalfluxto15kW.•Torespectthesafetyconstraint,themaximaltimeofthereac-tionis◦multipliedbytwo(480min).Optimalfeed-rateprofileat40Cgeneratingathermalfluxlowerthan15kWcanthenbedetermined.Thefirstintervaloftheoperatingtimeisalsointroducedasavariabletobeoptimizedbythecalculationalgorithm.
Fig.22.Evolutionofcompoundconcentrationsofthereactionat40◦Cinsemi-continuousmodewithafurfuralfeed-rateduring30min(calculatedpointswithsmoothing).
TheoptimizationresultispresentedFig.21.Thefurfuralfeed-rateisconstantduring338minandthegeneratedthermalfluxdoesnotexceed15kW.Therestofthefurfuralamountisfedinthefourthinterval.Thetotaltimeofthesynthesisis478.6minattheendofwhichtheoutputis27.73%.Fig.22representstheevolutionofproductandreagentconcentrationsasafunctionoftime.
5.Conclusion
Theresultsobtainedforthestoichiometricidentificationshowthatthealgorithmisabletofindoutagoodrepresen-tationofthetransformationfromsolelytheinitialandfinalconcentrations.
Theidentifiedkineticconstantsallowtosimulatethecurvesrepresentingtheevolutionofreagentsandproductsconcentra-tionstakingpartinthesynthesis.Forcompoundsthatareonlyproductsorreagents,theexperimentalpointsandthesimula-tionareingoodagreement.Ontheotherhand,forcompoundsthataresimultaneouslyreagentandproduct,themodeldoesnotperfectlyfittheexperiments,butthedescriptionofcompoundsevolutionremainscorrect.
Theoptimizationofaldoliccondensationoffurfuralonace-tonehasbeenrealizedbymaximizingthechemicalyieldofFAc.Asexpectedfromthereactionschemeandthevaluesofkineticconstants,thebestcriterionisobtainedforasynthesisindis-continuousmode(batch)realizedatthetemperatureof40◦C,whichrepresentsthemaximallimitimposedfortheresearchofoptimaloperatingconditions.
Althoughthissynthesisisnotveryexothermic,theextrapo-lationtoindustrialscalehasbeenrealizedbyintegratingsomethermallimitations(heating/coolingrate,thermalevacuationcapacity)thatremainacrucialproblemforbigcapacityjacketedreactors.
AppendixA.Nomenclature
aorderoftheconstituentinthereactionCconcentrationoftheconstituentEaactivationenergyofArrheniuslawFefeedrate
Hheatofreaction
Joptimizationcriterion
k0pre-exponentialfactorofArrheniuslawnmolenumberNnumberofpoints
NCnumberofconstituentsNEnumberofexperimentsNRnumberofreactionsrrateofreaction
Rgasconstant(8.314JK−1mol−1)Rjoverallrateofproductionofspeciesjttime
Ttemperature
UglobalheattransfercoefficientV(NC×NC)orthonormalmatrix
N.Fakhfakhetal./ChemicalEngineeringandProcessing47(2008)349–362361
Vrreactorvolumexdatapoint
Xextentofreactionymodelpoint
Y(NE×NR)datamatrix
Greeksymbolsλwavelengthνstoichiometriccoefficient
SubscriptsAcacetoneexpmeasuredFfurfuralFAc4-(2-furyl)-3-buten-2-one
F2Ac1,4-pentadien-3-one,1,5-di-2-furanylH2OwaterireferstoreactionsortopointnumberidcalculatedjreferstoconstituentskreferstoexperimentsP1,5,9-tri-2-furylnona-1,8-diene-3,7-dioneSuperscripts0initialffinalTtransposeReferences
[1]P.J.LeMeur,L’ing´enierieenchimiefine:d´efinitionsetfonction,Inf.Chim.
343(1992)95–101.
[2]P.Pollak,Lachimiefinerˆevesetr´ealit´es,Inf.Chim.288(1987)195–
203.
[3]E.Polastro,S.Tulcinsky,LaR&Denchimiefine,pourquoifaire?Inf.
Chim.383(1996)82–84.
[4]G.E.P.Box,W.G.Hunter,J.S.Hunter,StatisticsforExperimenters,Wiley,
1978.
[5]Garcia,V.,Exploitationdesmod`elesdetendancestœchiom´etriqueset
cin´etiquespourl’optimisationdesr´eacteursdiscontinusdechimiefine,Ph.D.Thesis,INPToulouse,France,1993.[6]Sedrati,Y.,Strat´egieexp´erimentalepourlad´eterminationdesmod`eles
stoechio-cin´etiques,Ph.D.Thesis,INPToulouse,France,1999.[7]Toulouse,C.,Conduiteoptimalesouscontraintesdes´ecurit´edesr´eacteurs
batchoualiment´esdechimiefine,Ph.D.Thesis,INPToulouse,France1999.
[8]J.Villermaux,C.Georgakis,Probl`emesactuelsdanslamiseenœuvredes
r´eactionsdiscontinues,Entropie23(137/138)(1987)45–51.
[9]O.Abel,A.Helbig,W.Marquardt,H.Zwick,T.Daszkowski,Productiv-ityoptimizationofanindustrialsemi-batchpolymerizationreactorundersafetyconstraints,J.Proc.Cont.10(2000)351–362.
[10]G.D.Cawthon,K.S.Knaebel,Optimizationofsemibatchpolymerization
reactions,Comp.Chem.Eng.13(1/2)(19)63–72.
[11]C.Filippi,J.L.Greffe,J.Bordet,J.Villermaux,Tendencymodellingof
semibatchreactorsforoptimizationandcontrol,Chem.Eng.Sci.41(4)(1986)913–920.
[12]C.Filippi-Bossy,J.Bordet,J.Villermaux,S.Marchal-Brassely,Batchreac-toroptimizationbyuseoftendencymodels,Comp.Chem.Eng.13(1/2)(19)35–47.
[13]S.Marchal-Brassely,J.Villermaux,J.-L.Houzelot,J.L.Barnay,Optimal
operationofasemi-batchreactorbyself-adaptivemodelsfortemper-atureandfeed-rateprofiles,Chem.Eng.Sci.47(9–11)(1992)2445–2450.
[14]A.Rastogi,A.Vega,C.Georgakis,H.G.StengerJr.,Optimizationofcat-alyzedepoxidationofunsaturedfattyacidsbyusingtendencymodels,Chem.Eng.Sci.45(8)(1990)2067–2074.
[15]A.Rastogi,J.Fotopoulos,C.Georgakis,H.G.StengerJr.,Theidentifica-tionofkineticexpressionsandtheevolutionaryoptimizationofspecialtychemicalbatchreactorsusingtendencymodels,Chem.Eng.Sci.47(9–11)(1992)2487–2492.
[16]V.Garcia,M.Cabassud,M.V.LeLann,L.Pibouleau,G.Casamatta,Con-strainedoptimizationforfinechemicalproductionsinbatchreactors,Chem.Eng.J.Biochem.Eng.J.59(3)(1995)229–241.
[17]N.Aziz,I.M.Mujtaba,Optimaloperationpoliciesinbatchreactors,Chem.
Eng.J.85(2002)313–325.
[18]D.Bonvin,D.W.T.Rippin,Targetfactoranalysisfortheidentifica-tionofstoichiometricmodels,Chem.Eng.Sci.45(12)(1990)3417–3426.
[19]P.Tsobanakis,S.H.Lee,J.A.Phillips,C.Georgakis,Adaptativestoichio-metricmodelingandstateestimationofbatchandfed-batchfermentationprocesses,in:Am.Inst.Chem.Engrs.,AnnualMeeting,SanFrancisco,California,November9,1997.
[20]J.W.Hamer,Stoichiometricinterpretationofmultireactiondata:appli-cationtofedbatchfermentationdata,Chem.Eng.Sci.44(10)(19)2363–2374.
[21]Batchmod:Stoichiometricidentificationsoftware,LicenseINPT,
1997.
[22]M.Cabassud,P.Cognet,V.Garcia,M.V.LeLann,L.Rigal,G.Casamatta,
Modellingandoptimisationofthelacticacidsynthesisbythealkalinedegradationoffructoseinabatchreactor,Chem.Eng.Commun.192(2005)758–786.
[23]C.Toulouse,J.Cezerac,M.Cabassud,M.V.LeLann,G.Casamatta,
Optimisationandscale-upofbatchchemicalreactors:impactofsafetyconstraints,Chem.Eng.Sci.51(10)(1996)2243–2252.
[24]C.Toulouse,M.Cabassud,M.V.LeLann,G.Casamatta,Op´erationsopti-malesdanslesr´eacteursdiscontinussouscontraintesdefonctionnement,
Entropie210(1998)29–34.
[25]N.N.Semenov,Z.Phys.48(1928)571–581.[26]T.Bottin-Strzalko,Effetdestructuresurlar´eversibilit´edelacondensation
aldolique:R´eactiondesphosphonoestersetdubenzald´ehyde,Tetrahedron29(24)(1973)4199–4204.
[27]J.E.Dubois,P.Fellmann,Influencedelag´eom´etriedel’´enolatesurla
st´er´eochimiedelacondensationaldolique,TetrahedronLett.16(14)(1975)1225–1228.
[28]P.Fellmann,J.E.Dubois,Condensationaldolique:effetsdesubstituants
alcoylessurlast´er´eochimiedelar´eactionentreun´enolateetunald´ehyde
ouunec´etone,Tetrahedron34(9)(1978)1343–1347.
[29]G.Kyriakakou,M.C.Roux-Schmitt,J.Seyden-Penne,St´er´eos´electivet´e
delacondensationaldolique.R´eactiondubenzald´ehydeetd’´enolatescarb´eniatesmagn´esiens␣-chlor´es,J.Organomet.Chem.47(2)(1973)315–320.
[30]N.L.Allinger,M.P.Cava,D.C.DeJongh,N.A.Lebel,C.L.Stevens,
Chimieorganique–volumeII:R´eactions,3`e
mee´dition,McGrawHill,1981.
[31]A.L.Bailey,G.Wortley,S.Southon,Measurementofaldehydesinlow
densitylipoproteinbyhighperformanceliquidchromatography,FreeRad.Biol.Med.23(7)(1997)1078–1085.
[32]P.Chambel,M.B.Oliveira,P.B.Andrade,J.O.Fernandes,R.M.Seabra,
M.A.Ferreira,Identificationof5,5-oxy-dimethylene-bis(2-furaldehyde)bythermaldecompositionof5-hydroxymethyl-2-furfuraldehyde,FoodChem.63(4)(1998)473–477.[33]E.Ferrer,A.Alegr´ıa,R.Farr´e,P.Abell´an,F.Romero,High-performance
liquidchromatographicdeterminationoffurfuralcompoundsininfantfor-mulas:changesduringheattreatmentandstorage,J.Chromatogr.A947(2002)85–95.
[34]P.Ho,T.A.Hogg,M.C.M.Silva,Applicationofaliquidchromatography
methodforthedeterminationofphenoliccompoundsandfuransinfortifiedwines,FoodChem.(1999)115–122.
[35]S.Kermasha,M.Goetghebeur,J.Dumont,R.Couture,Analysesofphe-nolicandfurfuralcompoundsinconcentratedandnon-concentratedapplejuices,FoodRes.Int.28(3)(1995)245–252.
362N.Fakhfakhetal./ChemicalEngineeringandProcessing47(2008)349–362
[38]S.Cramer,R.Gesthuisen,Simultaneousestimationoftheheatofreaction
andtheheattransfercoefficientbycalorimetry:estimationproblemsduetomodelsimplificationandhighjacketflowrates-theoreticaldevelopment,Chem.Eng.Sci.60(2005)4233–4248.
[36]F.LoCoco,C.Valentini,V.Novelli,L.Ceccon,High-performanceliquid
chromatographicdeterminationof2-furaldehydeand5-hydroxymethyl-2-furaldehydeinhoney,J.Chromatogr.A749(1996)95–102.
[37]A.A.Patel,S.R.Patel,Synthesisandcharacterizationoffurfural-acetone
polymers,Eur.Polym.J.19(3)(1983)231–234.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- dfix.cn 版权所有 湘ICP备2024080961号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务