您好,欢迎来到抵帆知识网。
搜索
您的当前位置:首页2014届青岛市高三一模 理科数学试题含答案

2014届青岛市高三一模 理科数学试题含答案

来源:抵帆知识网


青岛市高三统一质量检测

数学(理科)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:

1.答卷前,考生务必用2B铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.

3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.

第Ⅰ卷(选择题 共50分)

一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1. 若集合A{x|0x2},B{x|x1},则AB A.{x|0x1} C.{x|1x2}

B.{x|x0或x1} D.{x|0x2}

22. 已知向量a(1,2),b(3,m),mR,则“m6”是“a//(ab)”的

A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 3. 右图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为

A.11 B.11.5 C.12 D.12.5

0.1 频率组距 0.06 O 5 10 15 20 重量

高三数学(理科)试题 第1页(共13页)

x2y24. 双曲线1的渐近线方程为

45A.y55525x B.yx C.yx D.yx 4255 B.7 C.9

25. 执行右图所示的程序框图,则输出的结果是 A.5

D.11

开始 6. 函数y2cos(x2)图象的一条对称轴方程可以为

k1 3A.x B.x C.x D.x

434:x+y=1的两条切线,7. 过点P(1,3)作圆O切点分别为

22S1 S20? 否 输出k 结束 是 SS2k A和B,则弦长|AB|=

A.3 B.2 C.2 D.4

kk2 x0y18. 已知实数x,y满足约束条件4x3y4,则w的最小值是

xy0A.2 B.2 C.1 D.1 9. 由曲线xy1,直线yx,x3所围成封闭的平面图形的面积为 A.

32 B.4ln3 C.4ln3 D.2ln3 910. 在实数集R中定义一种运算“”,对任意a,bR,ab为唯一确定的实数,且具

有性质:

(1)对任意aR,a0a;

(2)对任意a,bR,abab(a0)(b0).

1的性质,有如下说法:①函数f(x)的最小值为3;②函数f(x)xe为偶函数;③函数f(x)的单调递增区间为(,0].

关于函数f(x)(e)x其中所有正确说法的个数为 A.0 B.1

C.2

D.3

第Ⅱ卷(非选择题 共100分)

高三数学(理科)试题 第2页(共13页)

二、填空题:本大题共5小题,每小题5分,共25分.

a2i,其中i为虚数单位,则ab ; bi(a,bR)

i12. 已知随机变量服从正态分布N(0,1),若P(1)a,a为常数,则

11. 已知

P(10) ;

13. 二项式(x16)展开式中的常数项为 ; 2x2 主视图 左视图 14. 如图所示是一个四棱锥的三视图, 则该几何体的体积为 ;

2 2 俯视图 2 x2x,x115. 已知函数f(x)logx, x1 ,g(x)|xk||x1|,若对任意的x1,x2R,

13都有f(x1)g(x2)成立,则实数k的取值范围为 .

三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)

在ABC中, a,b,c分别是角A,B,C的对边,且2cosAcosC(tanAtanC1)1. (Ⅰ)求B的大小; (Ⅱ)若ac

17.(本小题满分12分)

33,b3,求ABC的面积. 2高三数学(理科)试题 第3页(共13页)

2013年6月“神舟 ”发射成功.这次发射过程共有四个值得关注的环节,即发射、实验、授课、返回.据统计,由于时间关系,某班每位同学收看这四个环节的直播的概率分别为

3112、、、,并且各个环节的直播收看互不影响. 4323(Ⅰ)现有该班甲、乙、丙三名同学,求这3名同学至少有2名同学收看发射直播的概率; (Ⅱ)若用X表示该班某一位同学收看的环节数,求X的分布列与期望.

18.(本小题满分12分)

如图几何体中,四边形ABCD为矩形,AB2BC4,BFCFAEDE,

EF2,EF//AB,AFCF.

(Ⅰ)若G为FC的中点,证明:AF//面BDG; (Ⅱ)求二面角ABFC的余弦值.

19.(本小题满分12分)

已知{an}是等差数列,首项a13,前n项和为Sn.令cn(1)nSn(nN),{cn}的前20项和T20330.数列{bn}是公比为q的等比数列,前n项和为Wn,且b12,

E F

G

D C

A B

q3a9.

(Ⅰ)求数列{an}、{bn}的通项公式; (Ⅱ)证明:(3n1)WnnWn1(nN).

高三数学(理科)试题 第4页(共13页)

20.(本小题满分13分)

已知椭圆C1的中心为原点O,离心率e2,其一个焦点在抛物线C2:y2px的准线上,若抛物线C2与直线l: xy20相切. (Ⅰ)求该椭圆的标准方程;

(Ⅱ)当点Q(u,v)在椭圆C1上运动时,设动点P(vu,uv)的运动轨迹为C3.若点Tuuuruuuruuuruuur满足:OTMNOMON,其中M,N是C3上的点,直线OM与ON的斜率之积

为,试说明:是否存在两个定点F,F,使得TFTF为定值?若存在,求F,F的坐标;若不存在,说明理由.

21.(本小题满分14分)

)已知函数f(x)axlnx,函数g(x)的导函数g(x)e,且g(0)g(1为自然对数的底数. (Ⅰ)求f(x)的极值;

xe,其中e(Ⅱ)若x(0,),使得不等式g(x)xm3成立,试求实数m的取值范围; x(Ⅲ) 当a0时,对于x(0,),求证:f(x)g(x)2.

高三数学(理科)试题 第5页(共13页)

青岛市高三统一质量检测

数学(理科)参及评分标准

一、选择题:本大题共10小题.每小题5分,共50分. C A C B C D A D B C

二、填空题:本大题共5小题,每小题5分,共25分. 11.1 12.

351a 13.15 14.4 15.k或k

442三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.

16. (本小题满分12分)

解:(Ⅰ)由2cosAcosC(tanAtanC1)1得:

2cosAcosC(sinAsinC1)1 „„„„„„„„„„„„„„„„„„„„„2分

cosAcosC2(sinAsinCcosAcosC)1

1cos(AC),„„„„„„„„„„„„„„„„„„„„„„„„„„„4分

21cosB,又0B

2B „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„6分

3acb21 (Ⅱ)由余弦定理得:cosB2ac222(ac)22acb21, „„„„„„„„„„„„„„„„„„„„„„„„8分

2ac2又ac33275,b32ac3ac,ac „„„„„„„„„„„10分 244高三数学(理科)试题 第6页(共13页)

SABC115353„„„„„„„„„„„„„„„„„„12分 acsinB22421617.(本小题满分12分)

解: (Ⅰ)设“这3名同学至少有2名同学收看发射直播”为事件A,

327232333则P(A)C3()(1)C3(). „„„„„„„„„„„„„„„„„„„4分

44432(Ⅱ)由条件可知X可能取值为0,1,2,3,4.

31121P(X0)(1)(1)(1)(1);43233631123112P(X1)(1)(1)(1)(1)(1)(1)43234323 3112311213 (1)(1)(1)(1)(1)(1);4323432372311231123112P(X2)(1)(1)(1)(1)(1)(1)432343234323 3112311231127 (1)(1)(1)(1)(1)(1);4323432343231831123112P(X3)(1)(1)43234323

3112311223 (1)(1);432343237231121P(X4);

432312即X的分布列

0 X 1 2

3

23 724

1 12P

1 3613 727 18 „„„„„„„„„„„„„„„„„„„„„„„„„10分 X的期望E(X)0113723191234.„„„„„„„„„12分 3672187212418.(本小题满分12分)

解:(Ⅰ)连接AC交BD于O点,则O为AC的中点,连接OG 因为点G为FC中点,所以OG为AFC的中位线,

所以OG//AF „„„„„„„„„„„„„„„„„„„„„„„„„„„2分

高三数学(理科)试题 第7页(共13页)

AF面BDG,OG面BDG,

所以AF//面BDG „„„„„„4分 (Ⅱ)取AD中点M,BC的中点Q,连接MQ,则MQ//AB//EF, 所以MQFE共面

作FPMQ于P,ENMQ于N,则EN//FP且ENFP

E z F G x A D M N CO P B Q AEDEBFCF,ADBC

EMFQ ADE和BCF全等,

y ENM和FPQ全等,MNPQ1

BFCF,Q为BC中点,BCFQ

又BCMQ,FQMQQ,BC面MQFE

PFBC,PF面ABCD„„„„„„„„„„„„„„„„„„„„„„6分

以P为原点,PF为z轴建立空间直角坐标系如图所示,则A(3,1,0),B(1,1,0),

C(1,1,0),设F(0,0,h),则AF(3,1,h),CF(1,1,h)

AFCF,AFCF031h20h2

设面ABF的法向量n1(x1,y1,z1) AF(3,1,2),BF(1,1,2)

n1AF03x1y12z10由,令z11x10,y12 xy2z01n1BF011n1(0,2,1) „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„8分

设面CBF的法向量n2(x2,y2,z2) BF(1,1,2),BC(0,2,0)

n2BF0x2y22z20由,令z21y20,x22 2y02n2BC0高三数学(理科)试题 第8页(共13页)

n2(2,0,1)„„„„„„„„„„„„„„„„„„„„„„„„„„„„„10分

nn211cosn1,n21

|n1||n2|555设二面角ABFC的平面角为,

1则coscos(n1,n2)cosn1,n2 „„„„„„„„„„„„„12分

519.(本小题满分12分)

解:(Ⅰ)设等差数列的公差为d,因为cn(1)nSn 所以T20S1S2S3S4S20330 则a2a4a6a20330 则10(3d)1092d330 2解得d3,所以an33(n1)3n„„„„„„„„„„„„„„„„„„„„4分 所以qa927,q3 所以bn23n13„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„6分

2(13n)3n1 (Ⅱ)由(Ⅰ)知,Wn13要证(3n1)WnnWn1, 只需证(3n1)(31)n(3nnn11)

即证:32n1„„„„„„„„„„„„„„„„„„„„„„„„„„„„„8分 当n1时,32n1

下面用数学归纳法证明:当n2时,32n1

(1)当n2时,左边9,右边5,左右,不等式成立

高三数学(理科)试题 第9页(共13页)

nn

(2)假设nk(k2),3k2k1 则nk1时,3k133k3(2k1)6k32(k+1)+1

nk1时不等式成立

根据(1)(2)可知:当n2时,32n1 综上可知:32n1对于nN成立

所以(3n1)WnnWn1(nN) „„„„„„„„„„„„„„„„„„„„„12分 20.(本小题满分13分)

2y2pxy22py22p0, 解:(I)由x-y20nn抛物线C2:y22px与直线l: x-y20相切,

4p282p0p22 „„„„„„„„„„„„„„„„„„„„2分

抛物线C2的方程为:y242x,其准线方程为:x2, c2 离心率ec2,a2, b2a2c22, , ea2x2y21.„„„„„„„„„„„„„„„„„„„„„„5分 故椭圆的标准方程为42(II)设M(x1,y1),N(x2,y2),P(x,y),T(x,y)

1u(2yx)x2vu3则

yuvv1(xy)3当点Q(u,v)在椭圆C1上运动时,动点P(vu,uv)的运动轨迹C3

高三数学(理科)试题 第10页(共13页)

u2v2111[(2yx)]22[(xy)]24x 22y 212 4233C3的轨迹方程为:x22y212 „„„„„„„„„„„„„„„„„„„„„7分 uuuruuuruuuruuur由OTMNOMON得

(x,y)(x2x1,y2y1)2(x1,y1)(x2,y2)(x12x2,y12y2), xx12x2,yy12y2.

设kOM,kON分别为直线OM,ON的斜率,由题设条件知

kOMkONy1y21,因此x1x22y1y20,„„„„„„„„„„„„„„„„9分 x1x2222因为点M,N在椭圆x2y12上, 所以x12y112,x22y212,

故x2y(x14x24x1x2)2(y14y24y1y2)

22(x122y12)4(x22y2)4(x1x22y1y2)604(x1x22y1y2).

2222222222x2y21上的点, 所以x2y60,从而可知:T点是椭圆

603022x2y21的两个焦点,使得TFTF为定值,其坐存在两个定点F,F,且为椭圆6030标为F1(30,0),F2(30,0). „„„„„„„„„„„„„„„„„„„13分 21.(本小题满分14分)

解:(Ⅰ) 函数f(x)的定义域为(0,),f(x)a1(x0). x当a0时,f(x)0,f(x)在(0,)上为增函数,f(x)没有极值;„„„„„1分

高三数学(理科)试题 第11页(共13页)

1a(x)a, 当a0时,f(x)x11若x(0,)时,f(x)0;若x(,)时,f(x)0

aa111f(x)存在极大值,且当x时,f(x)极大f()ln()1

aaa综上可知:当a0时,f(x)没有极值;当a0时,f(x)存在极大值,且当x1时,a11f(x)极大f()ln()1 „„„„„„„„„„„„„„„„„„„„„„4分

aa(Ⅱ) 函数g(x)的导函数g(x)e,g(x)ec

xxg(0)g(1)e,(1c)eec0,g(x)ex„„„„„„„„„„„„„„5分 x(0,),使得不等式g(x)xm3成立, xx(0,),使得mxexx3成立,

令h(x)xexx3,则问题可转化为:mh(x)max

x对于h(x)xex3,x(0,),由于h(x)1ex(x12x),

x当x(0,)时,e1,x12x2x12x2,ex(x12x)1,

h(x)0,从而h(x)在(0,)上为减函数,h(x)h(0)3

m3„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„9分

(Ⅲ)当a0时,f(x)lnx,令(x)g(x)f(x)2,则(x)elnx2,

x1,且(x)在(0,)上为增函数 x1tt设(x)0的根为xt,则e,即te

t (x)ex当x(t,)时,(x)0,(x)在(0,t)上为减函数;(x)0,(x)当x(0,t)时,

高三数学(理科)试题 第12页(共13页)

在(t,)上为增函数,(x)min(t)elnt2elne2et2

tttt11(1)e10,()e20,t(,1)

221t由于(t)et2在t(,1)上为增函数,

211(x)min(t)et2e22.2520

22t12f(x)g(x)2 „„„„„„„„„„„„„„„„„„„„„„„„„„„„14分

高三数学(理科)试题 第13页(共13页)

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- dfix.cn 版权所有 湘ICP备2024080961号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务